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1 INTRODUCTION

luxNet is a neural network version of Streamer, a radiative transfer model. Given a set of inputs
consisting of surface, cloud, and atmospheric parameters, FluxNet will calculate downwelling
and upwelling shortwave and longwave fluxes at the surface and the top of the atmosphere. The

code is very small and extremely fast. Two versions of the network are currently available: one
requiring temperature and humidity profiles in the input stream and one that uses total column water
vapor rather than the profiles.  Both were developed for global conditions.

This manual will deal only with information needed to run and modify FluxNet. For details about the
physical basis of the model, the reader should refer to the Streamer User’s Guide. Users who wish to
modify or customize FluxNet should have some practical knowledge of neural networks, Fortran, C,
and Unix  programming.  

DIFFERENCES BETWEEN STREAMER AND FLUXNET

FluxNet is a backpropagation network. Like many Artificial Neural Networks (ANN), it becomes
“hardwired,” or inflexible, once it has been trained.  Because of some of the limitations inherent in the
neural network, and because of the time involved in creating the large data set needed to train the
network, FluxNet is a much simpler model than Streamer.  Its principle advantage is that it is faster
than Streamer by two to four orders of magnitude (100 to 10,000 times), making it ideal for large jobs
like image processing, which consist of thousands to millions of difference cases.  Users of Streamer
should be aware of the following limitations in FluxNet:

• Each “scene” (for example, a pixel in an image) can consist of just one surface type, open sea
water, snow/ice, or vegetation, and one cloud layer.

• The shortwave bands (bands 106 – 129 in Streamer) and longwave bands (bands 1 – 105) have
been consolidated into one shortwave and one longwave band; i.e., broadband calculations are
done.

• The output file format is fixed, although it would be easy to modify the C or IDL source code.

There are also problems and peculiarities associated with neural networks:

• An artificial neural network is created by “training” it on a particular set of input data; it will
behave unpredictably on inputs that fall outside the range of data provided in this training set.  See
Input and Output for the recommended range of values for each input parameter.

• If the values for certain parameters are unknown, a default value, rather than “0”, should be used
instead.  See Input and Output for a list of recommended default values for each input parameter.

ACKNOWLEDGMENTS

FluxNet is a neural network approximation of Streamer. Please refer to the Streamer User’s Guide for
more information regarding Streamer and its history. The Stuttgart Neural Network Simulator by
Andreas Zell et al. (http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/snns.html) was used
to train the neural network component of FluxNet and to convert it to C. FluxNet was designed and
implemented by J. Key, E. Amano, J. Collins, and A. Schweiger. Funding was provided by NASA
Polar Programs and by the NASA EOS interdisciplinary project POLES.
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QUESTIONS?

FluxNet may be obtained via anonymous ftp as described in the next section. If you have questions or
bug reports, contact:

Jeff Key
NOAA/NESDIS
1225 West Dayton Street
Madison, WI 53706
e-mail: jkey@ssec.wisc.edu

Are you on the mailing list?  If you have requested information via e-mail then you are.  If not, and you
plan to use FluxNet, please register on the web at http://stratus.ssec.wisc.edu.  

Continued work on this program is largely unfunded.  I’ll be happy to answer questions about things
that are not in the User’s Guide, and will fix bugs in a reasonably short period of time.  Keep in mind,
however, that I may not be able to provide an immediate response.

DISCLAIMER

This program is distributed as “freeware”.  Except when otherwise stated in writing the program is
provided “as is” without warranty of any kind, either expressed or implied, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose.  The entire risk as to
the quality and performance of the program is with you. In no event unless agreed to in writing will the
author or any other party who may modify and/or redistribute the program be liable to you for
damages, including any general, special, incidental or consequential damages arising out of the use or
inability to use the program. 

A NOTE ON “CAUTIONS”

There are a number of cautions given in this manual.  These are not meant to discourage you from
using FluxNet, but rather to inform those users with little experience in radiative transfer or neural
networks of things that this model does not do well.  Ultimately you have to decide if what you are
trying to do is reasonable, but these cautions should help steer you away from those aspects of the
model that have the greatest uncertainty.

REFERENCING FLUXNET IN PUBLICATIONS

While FluxNet is a unique tool, it alone does not expand our knowledge of radiative transfer, and has
therefore not been published in a refereed journal. So, if you are presenting results obtained using
FluxNet, how do you reference it?  If you want a single reference, use

Key, J. and A.J. Schweiger, 1998, Tools for atmospheric radiative transfer: Streamer and FluxNet,
Computers & Geosciences, 24(5), 443-451.

or simply reference this User’s Guide:
FluxNet User’s Guide
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Key, J., E. Amano, J. Collins, and A. Schweiger, 2001, FluxNet User’s Guide, Cooperative Institute for
Meteorological Satellite Studies, University of Wisconsin, 1225 West Dayton St., Madison, WI, 27
pp.

WHAT’S NEW

Version 4  uses profile information specified as sigma levels rather than pressure levels.  This allows
for elevated surfaces in simulations.  Cloud temperature has replaced cloud pressure in the input
stream, making the program more useful in some satellite applications.  The training data now includes
many colder and higher elevation polar profiles.  FluxNet was trained on data from Streamer v3.0, the
most recent release.
FluxNet User’s Guide
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2 OBTAINING AND BUILDING FLUXNET

IMPORTANT! 
If you download the code, please register on the web at http://stratus.ssec.wisc.edu. Doing so will
ensure that you are kept informed, via email, of bug fixes and updates.

FluxNet may be obtained for implementation under UNIX and other operating systems.  With a few
exceptions the source code is the same for all, but the method of getting the files and building the
executable program varies. The C programs are very short and generic, and should run on any system
with a C compiler. 

USER’S GUIDE

The User’s Guide can be obtained via anonymous ftp as described below.  The files are userman.ps
(Postscript) or userman.pdf in the docs subdirectory of the main fluxnet subdirectory.  You can view
the files with a postscript viewer such as Ghostview/Ghostscript and with Adobe Acrobat Reader,
respectively.  Because of size limitations with some systems, you may need special printing options;
e.g., lpr -s userman.ps on a UNIX machine. To get the manual via anonymous ftp:

1. ftp stratus.ssec.wisc.edu
2. Use anonymous as the username and your e-mail address as the password
3. cd pub/fluxnet/docs
4. bin
5. get userman.ps or userman.pdf
6. quit

PROGRAMS AND SOURCE CODE

There are two distributions of FluxNet: fnet.tar.gz (or fnet.zip for MS Windows) contains only the
main programs. The other, fnetall.tar.gz (or fnetall.zip), contains everything in fnet.tar.Z plus all the
programs used to develop FluxNet. You’ll only need the latter if you intend to implement your own
neural network and you’ll only need the former if you don’t.  The executables (binaries) for various
operating systems are not included in these files. 

On your computer, create a directory for FluxNet and switch to it.  FluxNet can then be obtained via
anonymous ftp as follows:

1. ftp stratus.ssec.wisc.edu 
2. Use anonymous as the username and your e-mail address as the password
3. cd pub/fluxnet
4. bin
5. get fnet.tar.gz or fnetall.tar.gz
6. quit

The executables for UNIX machines (Sun Solaris, SGI Irix, and Linux on PCs) are available in the
directory pub/fluxnet/bin. They must be downloaded separately.
FluxNet User’s Guide
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Next, uncompress the tar file and extract the program files:

gzip -d fnet.tar.gz
tar xvf fnet.tar

You can then delete the file fnet.tar. Follow the instructions below to compile the programs, if
necessary.  

BUILDING THE PROGRAM (IF NECESSARY)

If you need to build the executables, follow these steps. The following example is for compiling
fluxnet (or fluxnet.exe). The procedure is the same for fluxnetp (using netp). Compile the main
program fluxnet.c and the network file net.c (generated by SNNS):

cc -O fluxnet.c net.c -lm -o fluxnet (basic Unix; use “gcc” for Linux)
bcc fluxnet.c net.c (Borland C; use “cl” for Visual C)

You should now have the executable file fluxnet or fluxnet.exe.

DIRECTORY STRUCTURE

The full distribution contains the following directories:

fluxnet
docs - User’s guide
source - Source code, C and IDL
bin - Binary executable files
streamer - Programs and data for creating the training data with Streamer

lib - Streamer program files for the subroutine library
snns - C and Unix programs for preparing to run SNNS, analyzing training data and

  results
TOVSdata - TOVS-derived profile data
testio - Test input/output files
FluxNet User’s Guide
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3 RUNNING FLUXNET

There are two programs that correspond to the two trained networks: the network without temperature
and humidity profiles (fluxnet) and the network that incorporates profiles (fluxnetp). MS Windows
executables will have the .exe extension. 

To run FluxNet type:

fluxnet <input-file-name> <output-file-name>

where fluxnet may be fluxnetp, and test.in and test.out are the names of input and output files,
respectively (which can be any names). 

For IDL (v4.0 and higher), the procedures in the fluxnet.pro and fluxnetp.pro files must be compiled
then executed.  For example, from the IDL prompt:

> .run fluxnet
> fluxnet,’test.in’,’test.out’

The directory testio has test input data.

Table 1 lists the input required for the network that does not use atmospheric temperature and humidity
profiles.  Table 2 gives the input for the network with profiles.  Table 3 lists the network output, which
is the same for both networks.  In the input and output descriptions, all variables are floating point
unless otherwise indicated. See the test input files in the next section for examples. Each  line in the
input file should consist of a value for each variable, in the order shown. 

Additionally, not all values within the specified ranges are necessarily reasonable.  In some cases a
variable value may be reasonable but in other cases it may not.  There are dependencies between
variables that must be considered.  For example, water clouds would probably not exist during winter
in the middle or upper troposphere in the Arctic, so specifying a cloud top pressure of 400 mb when
the surface temperature is 240 K, implying winter conditions, will result in large errors in the
longwave fluxes.  This happens because FluxNet was trained with reasonable values; e.g., water cloud
temperatures no less than 253 K, ice cloud optical depths less than 50, etc. 

CAUTION
•  The recommended range of values for each variable refers to the range of values

that was used to train FluxNet.  The network will behave unpredictably for input
values that fall outside of this range.

• Make sure you are using the correct units for each variable.  If you do not know
the value of a particular variable, do not leave it blank; rather, enter the default
value.
FluxNet User’s Guide
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Table 1: Input for the network without profiles (fluxnet).

tsurf Surface (skin) temperature, in degrees Kelvin

emissurf Surface emissivity, recommended range 0.91 – 1.0

surftype Surface type indicator: 1=open sea water, 3=snow/ice, 5=generic vegeta-
tion (2 and 4 are not used).

albsurf Surface shortwave broadband albedo.  This is the albedo given the atmo-
spheric (including cloud cover) conditions, not the inherent, no-atmosphere  
albedo as in Streamer. In other words, it is the albedo that would be mea-
sured by up- and down-looking radiometers. The recommended range for 
each surface type is 0.25 – 0.99 (snow), 0.1 – 0.25 (water), and 0.15 – 0.55 
(vegetation).  For nighttime conditions, set albsurf to 0.

cldphase Cloud particle phase. Enter 0 for liquid water cloud, 1 for ice cloud (solid 
hexagonal columns).

cldre Cloud particle effective radius in microns.  Recommended ranges: 2.5 – 20 
µm for water (liquid) clouds, and 10 – 80 µm for ice clouds. 

cldwc Cloud water content in g m-3.  Recommended ranges: 0.05 - 0.5 g m-3 for 

water (liquid) clouds, and 0.0007 - 0.11 g m-3 for ice clouds.

cldtau Cloud visible optical depth.  Recommended range for water cloud is 0 – 
150 (0 is clear); the ice cloud range is 0 - 50.

cldtemp Cloud top temperature (K).  Use values less than 273 K for ice clouds and  
253 K or greater for water (liquid) clouds.

cldfrac Cloud fraction, range 0.0 – 1.0.  For clear sky set cldfrac to 0, cldphase to 
0, cldre to 10, cldwc to 0.2  cldtemp to 273, and cldtau to 0.

zen Solar zenith angle in degrees.  Recommended range 0 - 90.  Use 90 for 
nighttime (dark) conditions.

tauhaze Aerosol optical depth (unitless), recommended range 0.05 – 0.5

o3 Total column ozone in g m-2,  recommended range 6.4 – 9.7l. 

(1 Dobson unit = 0.021416667 g m-2) 
h2ocol Total column water amount (water path) in g m-2, recommended range 700 

– 70,000. 
FluxNet User’s Guide
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Table 2: Input for the network with profiles (fluxnetp).

tsurf Surface (skin) temperature, in degrees Kelvin

emissurf Surface emissivity, recommended range 0.91 – 1.0

surftype Surface type indicator: 1=open sea water, 3=snow/ice, 5=generic vege-
tation (2 and 4 are not used).

albsurf Surface shortwave broadband albedo.   This is the albedo given the 
atmospheric (including cloud cover) conditions, not the inherent, no-
atmosphere  albedo as in Streamer. In other words, it is the albedo that 
would be measured by up- and down-looking radiometers. The recom-
mended range for each surface type is 0.35 – 0.9 (snow), 0.1 – 0.2 
(water), and 0.15 – 0.55 (vegetation).  For nighttime conditions, set 
albsurf to 0.

cldphase Cloud particle phase. Enter 0 for liquid water cloud, 1 for ice cloud 
(solid hexagonal columns).

cldre Cloud particle effective radius in microns.  Recommended ranges: 2.5 
– 20 µm for water (liquid) clouds, and 10 – 80 µm for ice clouds.

cldwc Cloud water content in g m-3.  Recommended ranges: 0.05 – 0.5 g m-3 

for water (liquid) clouds, and 0.0007 - 0.11 g m-3 for ice clouds.

cldtau Cloud visible optical depth.  Recommended range for water cloud is 0 - 
150 (0 is clear); the ice cloud range is 0 - 50.

cldtemp Cloud top temperature (K).  Use values less than 273 K for ice clouds 
and  253 K or greater for water (liquid) clouds.

cldfrac Cloud fraction, range 0.0 – 1.0.  For clear sky set cldfrac to 0, cldphase 
to 0, cldre to 10, cldwc to 0.2  cldtemp to 273, and cldtau to 0.

zen Solar zenith angle in degrees.  Recommended range 0 - 90.  Use 90 for 
nighttime (dark) conditions.

tauhaze Aerosol optical depth (unitless), recommended range 0.05 – 0.5

o3 Total column ozone in g m-2,  recommended range 6.4 – 9.7.

(1 Dobson unit = 0.021416667 g m-2)
t_in(i), i = 1..nlevs
wv_in(i), i = 1..nlevs

Temperature in degrees Kelvin and water vapor mixing ratio in g/kg. 
The levels (nlevs=20) correspond to the following sigma coordinates: 

0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50,
0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00

where the sigma coordinate is the pressure at some level divided by the 
surface pressure.  The sigma coordinate for the surface is always 1.  
For example, if the surface pressure is 1013 mb  the sigma coordinate 
for the 500 mb level it is 0.494; for the 350 mb level it is 0.346, etc.
FluxNet User’s Guide
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NOTE ON TOA FLUXES

While the TOA downwelling shortwave flux is calculated by FluxNet, it will generally be more
accurate to calculate it as the solar constant times the cosine of the solar zenith angle.  The solar

constant used in Streamer for generating the training data was 1354.2 W m-2, which is based on the
mean Earth-Sun distance for the spectral band 0.28 - 4.0 µm.  For example, with a 50 degree solar

zenith angle, the TOA downwelling shortwave flux is 870.46 W m-2.  The downwelling longwave flux
at TOA is essentially zero.

The cloud radiative effect, more commonly called "cloud forcing", can be computed from the net
shortwave and longwave fluxes at the surface and TOA.  It is defined as

where Fλ ,z is the net flux (W m-2) for shortwave or longwave radiation (Λ) at either the surface or TOA

(z), and Ac is the cloud fraction in the scene.  The net flux is equal to the downwelling minus the
upwelling fluxes.  Analogous to net radiation, the all-wave net cloud forcing at either the surface or
TOA can be calculated from 

Table 3: Output for both fluxnet and fluxnetp.

swdsrf Total (direct plus diffuse) downwelling surface shortwave flux, in W m-2

swusrf Upwelling surface shortwave flux, in W m-2

lwdsrf Downwelling surface longwave flux, in W m-2

lwusrf Upwelling surface longwave flux, in W m-2

swdtoa Downwelling top-of-atmosphere shortwave flux, in W m-2

swutoa Upwelling top-of-atmosphere shortwave flux, in W m-2.  See note below.

lwutoa Upwelling top-of-atmosphere longwave flux, in W m-2

CFλ z,
Fλ z,∂

a∂
------------- ad

0

Ac

∫ Fλ z, Ac( ) Fλ z, 0( )–= =

CFz CFshortwave CFlongwave+=
FluxNet User’s Guide
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4 SAMPLE INPUT AND OUTPUT

Examples of input data are given below.  Note that you can format the input with any number of
spaces, tabs, or carriage returns between data values. 

INPUT: WITHOUT PROFILES

 270.05 0.954 5. 0.397 1.  56.3 0.107   4.1  219.9 0.97 27.67 0.17  6.647  6306.54
 271.17 0.966 1. 0.106 0.  11.9 0.103   7.0  260.4 1.00 60.85 0.42 10.497  6103.54
 276.77 0.968 1. 0.087 0.  15.4 0.079   0.9  257.1 0.42 20.61 0.24  8.172  9481.55

INPUT: WITH TEMPERATURE & RELATIVE HUMIDITY PROFILES

 288.85 0.965 5. 0.000 0.  10.0 0.200   0.0  273.0 0.00 90.00 0.06  6.771
 217.57 218.13 221.05 226.71 233.14 237.17 235.12 240.35 246.78 252.50
 257.57 262.51 267.33 271.32 274.55 277.58 281.26 285.28 288.50 288.85
  0.0020  0.0057  0.0192  0.0446  0.0871  0.1501  0.2401  0.3588  0.5135  0.7269
  0.8437  0.9145  1.0487  1.4036  2.1436  3.5965  6.5303  7.4423  7.9373  8.7263
 280.05 0.944 1. 0.052 0.  10.0 0.200   0.0  273.0 0.00 52.13 0.12  9.132
 218.94 212.79 207.39 212.49 224.35 235.09 243.30 249.41 254.45 259.01
 263.28 267.15 270.52 273.06 275.48 277.76 278.24 275.26 276.55 280.05
  0.0020  0.0095  0.0323  0.0748  0.1464  0.2523  0.4084  0.6011  0.7744  0.9580
  1.1259  1.3415  1.6184  1.8148  2.0094  2.1955  2.5268  3.4655  4.5085  4.8212
 258.35 0.912 8. 0.136 0.  11.2 0.404   0.2  258.3 0.46 49.18 0.48  7.389
 202.95 205.60 206.28 203.19 213.16 223.13 231.73 238.82 245.11 250.90
 255.32 258.11 259.88 262.15 261.69 260.01 259.04 259.95 259.75 258.35
  0.0020  0.0032  0.0107  0.0247  0.0483  0.0833  0.1970  0.3724  0.6320  0.9912
  1.3174  1.3624  1.1444  1.1054  1.0411  0.8809  0.5263  0.5880  0.6422  0.5647

OUTPUT

The following sample output is the same format for both fluxnet and fluxnetp, with these variables on
each line: surface downwelling shortwave, upwelling shortwave, downwelling longwave, and
upwelling longwave; TOA downwelling shortwave, upwelling shortwave, and upwelling longwave
fluxes.  The sample data below does not correspond to the input data shown above.

  897.29   154.57   400.57   441.09  1238.49   237.55   241.95 
   -2.30    -0.92   380.20   442.45     2.92    -2.84   250.49 
    2.05    -0.51   264.08   327.27     2.59    -4.45   236.25 
FluxNet User’s Guide
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5 SAMPLE APPLICATIONS

FluxNet can be used in any application that requires fast and accurate radiative transfer calculations.
Simple parameterizations are fast but most cloud, atmospheric, and surface properties are implicit and
cannot be controlled by the user.  Radiative transfer models are flexible and accurate, but are not
usually fast enough for processing very large data sets.

FluxNet is currently being used in CASPR (http://stratus.ssec.wisc.edu/caspr) to compute radiative
fluxes based on cloud and surface properties estimated from AVHRR data and to compute radiative
fluxes with the International Satellite Cloud Climatology Project (ISCCP) D1 cloud data set.  An
example of the latter is shown in Figure 1.  

Figure 1.  Downwelling and upwelling shortwave and longwave fluxes at the surface (W m-2)
over the Arctic on June 1, 1986, as computed using the ISCCP D1 cloud product and FluxNet.
FluxNet User’s Guide
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Figure 2 gives an example of using FluxNet to calculate downwelling shortwave and longwave fluxes
at the surface over a range of cloud amounts and cloud optical depths. 

Figure 2.  Downwelling shortwave and longwave fluxes at the surface as a function
of cloud amount (Ac) and cloud visible optical depth (tau).  The results are for a solar
zenith angle of 50 degrees, a surface albedo of 0.15, and a water cloud with an effec-
tive radius of 10 microns.
FluxNet User’s Guide
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6 TECHNICAL NOTES

This section gives a brief theoretical background for those unfamiliar with neural networks, and some
information that may be of assistance to those considering modifying FluxNet.  What it does not
attempt to do is to teach those unfamiliar with ANNs how to create an artificial neural network.
Interested users should refer to introductory texts on ANNs before attempting to modify FluxNet.

FluxNet was trained using the Stuttgart Neural Network Simulator, version 4.1 (University of Stuttgart,
Institute fior Parallel and Distributed High Performance Systems, Germany).  Information about
SNNS can be found on the World Wide Web at http://www.informatik.uni-stuttgart.de/ipvr/bv/
projeckte/snns/snns.html.

WHAT IS A BACKPROPAGATION NETWORK?

Artificial neural network refers to a family of computational and pattern-recognition algorithms
typically consisting of a group of interconnected processing nodes.  ANNs were initially used by
neuroscientists in an attempt to understand certain functions of the brain, hence the misleading
moniker. Over the past decade they have increasingly been applied to tasks involving the recognition
of complex patterns such as signal processing, optical character recognition, and even stock market
forecasting. Although a variety of ANN architectures has been created, the three- and four-layer
backpropagation networks are the most popular.

The backpropagation network is what is called a multi-layer feed-forward network. The signals from
the input units are fed forward through processing nodes in the hidden layers to the output units; the
output is then compared to desired results, and the error is propagated backwards from the output layer
through the hidden layers (hence the name “backpropagation”) and the weight of each connection is
adjusted accordingly.

The input to each processing unit j is a weighted sum of the output from the units in the previous layer.
The output from this unit j is a function, called the activation function, of this sum:

, (1)

where wji is the weight of the connection from input unit i to output unit j and oi is the signal from

input unit i.

There are several popular activation functions, such as the sigmoid (or logistic function) 

(2)

and the hyperbolic tangent function. As well as adding a non-linear element to the network, these
“squashing” functions output values in the range [0, 1] (for the sigmoid function) or [-1, 1] (for the
tanh function), thus normalizing the outputs and preventing them from blowing up into very large
numbers.

oj f wji oi⋅
i

∑ 
 
 

=

f x( ) 1

1 e
x–

+
----------------=
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Once the input signals are propagated forward through the hidden layers to the output layer, the output is compared
to the desired results for the input pattern. The error, Ek, at each output unit k is the difference between the desired
output (tk) and the actual output (ok):

. (3)

A fundamental problem for a multi-layer network is how to update the weights of the network connections.
Rumelhart et al. (1986) formulated an algorithm called the generalized delta rule as a solution to this problem.
Weight updates in the generalized delta rule is a function of the error signal δi at unit i and the output oj from the

preceding unit j, the unit sending the signal:

, (4)

where η is the “learning rate,” and δ is calculated slightly differently for output and hidden units. For output units,

(5)

and for hidden units,

, (6)

where  is  for the sigmoid function.

In other words, the learning cycle in a backpropagation network involves the repetitive simultaneous presentation
of matching input and output patterns while the weights are adjusted using a gradient descent search. Thus a neural
network can also be viewed as a non-linear numerical optimization procedure. 

Characteristics of neural networks that make them attractive for the research presented here are: (1) the four-layer
network can, theoretically, determine any computable function, (2) no assumptions about the statistical distribution
of input variables are made, and (3) they are very fast once they are trained. However, since neural network-based
estimation methods do not include any assumptions about the underlying non-linear physics, estimates can only be
truly optimal with respect to the training data set and estimation errors need to be determined through the
application to an independent test or validation data set. 

FLUXNET ARCHITECTURE

The “optimal” network architecture is dependent on any given data set, but can be determined relatively painlessly
through some well-established heuristics.  Which architecture works and which doesn’t can happen quite
capriciously. Generally, you can start with a very small network and keep adding more nodes until the network
starts performing acceptably well.  Alternatively, you can start with a big network (e.g., two hidden layers with
thirty nodes each) and keep pruning away the nodes until the network starts behaving badly.  In the end, you want
the smallest network that will get the job done, since bigger networks require more calculations and tend to
“memorize” the training data rather than generalizing the function.

Ek tk ok–=

wji∆ ηδjoi=

δk Ek f′ netk( )⋅=

δj f ′ netj( ) δkwkj∑⋅=

f′ netj( ) oj 1 oj–( )
FluxNet User’s Guide



15

e
or

flu

flu
The FluxNet network architectures are given in Table 1.These network architectures were found to
produce reasonably good approximations of the expected output data.  This version of FluxNet was
trained with Streamer v3.0.

DATA USED TO TRAIN FLUXNET

Figures 2 and 3 show the relative frequencies and ranges of the input and target (or output flux)
variables used to generate data (Streamer) to train FluxNet.  Figure 4 shows the temperature and
humidity profiles used to generate the target fluxes with Streamer.  Figure 5 give the relative
frequencies of the latitudes of these profiles.  While the profiles do cover all latitudes, the midlatitudes
are better represented than the tropics.  The profiles were interpolated to the 20 pressure levels given in
Table 2 before training fluxnetp.

FLUXNET TRAINING ERRORS

Streamer was run with approximately 17,000 sets of randomly generated input data. The nonprofile
FluxNet network, fluxnet, was trained with total column precipitable water rather than the water vapor
profile. Comparisons of fluxnet outputs with the corresponding Streamer output are shown below, in
Figure 6.  Deviations of FluxNet from Streamer results are also given in the figure as bias (FluxNet

minus Streamer fluxes) and root-mean-squared errors. Errors for fluxnetp are a few W m-2 smaller
than for fluxnet.

COMPUTATION SPEED

FluxNet is 2 to 4 orders of magnitude faster than Streamer. It took Streamer took 24 hours on a 800
MHz PC (Linux) to calculate the longwave training data.  It took FluxNet 15 seconds to calculate the
same data.  Training time ranges from 2-24 hours, depending on the size of the training data set and the
number of nodes in the network.

Table 4: Network architectures for the versions without profiles (fluxnet) and with profiles (fluxnetp).

Input Nodes Hidden Layer 1
Nodes

Hidden Layer 2
Nodes

Output Nodes # of Training
Cycles

Mean Squar
Training Err

xnet 14 16 10 7 7,000 0.0008

xnetp 53 24 12 7 8,000 0.0004
FluxNet User’s Guide
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Figure 3.  Relative frequencies of input variables used to train FluxNet.  Spikes in the histograms
of cloud parameters correspond to their values for clear cases.
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Figure 2, continued.
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Figure 4.  Relative frequencies of target (output) variables used to train FluxNet.

Surface Upwelling Shortwave

0 200 400 600 800 1000 1200
Flux (W/m^2)

0

10

20

30

40

50

60

R
el

at
iv

e 
F

re
qu

en
cy

 (
%

)

FluxNet User’s Guide



19
          

Profiles of Temperature

180 200 220 240 260 280 300 320
T (K)

1000

800

600

400

200

P
re

ss
ur

e 
(m

b)

Profiles of Specific Humidity

0 5 10 15 20
q (g/kg)

1000

800

600

400

200

P
re

ss
ur

e 
(m

b)

Figure 5.  Sample temperature and humidity profiles used in generating training and testing
data for FluxNet.
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Figure 6.  Relative frequencies of the latitude of profiles used in training.
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Figure 7. Comparison of FluxNet (no profiles) and Streamer fluxes for one test data set.  Other test
data sets yield almost identical results.
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Figure 6, cont.
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7 CUSTOMIZING FLUXNET

If the network configurations that are currently available do not suit your needs, then you will have to
develop your own. Users who wish to modify or customize FluxNet should have some practical
knowledge of neural networks, Fortran, C, and Unix  programming. The major steps involved in
designing and implementing a new network are:

1. Generate training and testing data by either sampling your own dataset or running Streamer.
2. Reformat and scale the training data.
3. Train the network with the SNNS software.
4. Create the main C and/or IDL program to use the C code generated by SNNS and build the exe-

cutables.

GENERATING TRAINING DATA

The training dataset is the most important part of customizing your network.  It involves the selection
of appropriate input and output variables and the selection of cases that are representative of the entire
dataset to which the final network will be applied.  In selecting the input variables, avoid redundancy.
For example, if cloud particle effective radius will have only two values, one for liquid cloud and one
for ice cloud, then having a cloud phase indicator variable would be redundant.

In selecting the training cases it is extremely important that the training set be representative of not
only the range of conditions in the full dataset, but also the approximate frequency distributions of the
individual variables.  This is perhaps easiest to accomplish by sampling a very large dataset and then
using Streamer to compute the fluxes.  Another possibility is to use the version of Streamer supplied
with the FluxNet distribution, which has a special routine to randomly generate values of your input
variables.  This procedure is described next.

For generating training and testing data for FluxNet, Streamer was run as a subroutine. All programs
are written in Fortran. While the programs and data used to build FluxNet are provided as part of the
distribution, the subroutine library will need to be built. (If you are interested in obtaining the entire
Streamer model, go to the World Wide Web page at http://stratus.ssec.wisc.edu.)

The subroutine implementation of Streamer allows greater flexibility in generating training data than
the standard input file format. In the main program a range of values for each FluxNet input variable
(e.g., surface albedo, cloud optical depth) is specified, and a uniform random number generator is
employed to select a value within the range. Fluxes are then calculated for any number of cases over
any number of profiles.

The files that will need to be modified are in the fluxnet/streamer subdirectory. You may want to
change the Streamer main calling program and/or the output subroutine. These are run.f, and write.f,
respectively. Note that the temperature and humidity profiles are written in run.f but the other
variables are written by write.f. You may also need to change the default values set in lib/defaults.f.
A Sun Solaris makefile is provided for compiling the program the procedures in lib/ into a library. It
may need to be modified for other operating systems.  This library must be linked to the object code
corresponding to run.f and write.f.
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SCALE THE TRAINING DATA

Before training the neural network the training and testing data must be scaled and SNNS pattern files
must be created.  The proper scaling must be determined such that each input and output variable value
presented to neural network falls between 0 and 1 (actually, something less than one is better).  The
simplest scaling method is to subtract the minimum value from each value and divide by the observed
range.  The IDL program hists.pro (and histsp.pro) in the snns subdirectory plots a histogram and
prints out the minimum, maximum, and range values for each variable. 

Next sample and scale the raw input data, creating training and testing files with the program
mkdatfile.  The source code is mkdatfile.c (and mkdatfilep.c), which will need to be edited (scaling,
number of variables, etc.) and compiled.  This program is used as follows:

        mkdatfile invarfln outvarfln outfile modulo remainder  
        
where modulo and remainder are used for subsampling cases.  For example, case i is selected if the
remainder of i divided by modulo is remainder.  invarfln and outvarfln are the files containing the raw
input and output variables for network training.  outfile is the file that will contain the scaled input and
output.  Of course, if you change the nature of the training data you must modify the C source code for
this program.  For example,

mkdatfile runin.out runout.out run.trn 10 1 
mkdatfile runin.out runout.out run.tst 5 2 

creates a scaled training file containing the 1st, 11th, 21st, etc. cases from the input files and a scaled
test file with the 2nd, 7th, etc. input cases. 

Now create SNNS pattern files for the training and testing data sets:

mkpatfile run.trn > runtrn.pat
mkpatfile run.tst > runtst.pat

mkpatfile and mkpatfilep (for patterns with profiles) are Unix scripts that add the required header to
the training and testing data. The output files are the ones that will be used by SNNS. These scripts will
need to be edited to indicate the proper number of cases and variables in your training and testing data
files.

TRAINING THE NETWORK WITH SNNS 

The network can now be trained using either the graphical user interface (GUI) or the SNNS batch file
facility. 
  

CAUTION
Before training the network you should be familiar with running the SNNS neural
network software.  The instructions given here should be detailed enough to get you
through, but that’s about all!  They apply to SNNS version 4.1.
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GUI

1. Start SNNS. 
2. Specify the network architecture.

a) Click on BIGNET in the SNNS manager window then feed_forward.  

b) Click POS to set the display position to BELOW.

c) Create a network with the appropriate number of input units, hidden units in the first hidden
layer, hidden units in the second hidden layer, and output units.  Make sure the type shown in
the right-hand column of boxes is Input, then specify the number of input variables in the box
corresponding to the No. of units in the x-direction.  Specify 1 for the No. of units in the y-
direction.  Click ENTER.  If the layer specification is acceptable then it will also appear in the
left column of boxes.  

Click TYPE until Hidden is shown in the top box of the right column, then specify the number
of hidden units for this first hidden layer in the x-direction box, and 1 for the y-direction box.
Click ENTER.  Specify the number of nodes for the second hidden layer, then click ENTER.

Click TYPE until Output is shown in the top-right box, then specify the number of output
nodes in the x-direction box, and 1 for the y-direction box.  Click ENTER.

d) Click FULL CONNECTION at the bottom of the window then CREATE NET then DONE.

5. Look at the network structure that you just defined by clicking the DISPLAY button in the main 
window (snns-manager).

6. LOAD the training and testing patterns via the FILE menu, clicking on PAT (patterns) to load the 
data.  Click DONE.

7. Open the CONTROL window.
a) set STEPS to 1

b) set CYCLES to 100.  You’ll eventually need to go through 1,000 to 20,000 training cycles, but
starting with 100 will give you a good idea of how well the network will train.  You can click
ALL again to continue training after the each set of 100 cycles.

c) select runtrn with the first USE button.  This button sets the training data file.

d) select runtst with the second USE button.  This button sets the test data file.

e) with the first SEL.FUNC. button, choose Std_backpropagation

f) with the second SEL.FUNC. button, choose Topological_order

g) with the third SEL.FUNC. button, choose Randomize_weights

h) set LEARN to 0.2 and 0.0

i) click on SHUFFLE so that it is activated.  This randomizes the order in which the training data
set is presented to the network.

j) click INIT to initialize (in this case, randomize) the weights of the connections.

k) don’t click DONE

12. To see the results of the test cases, enter a number of cycles next to VALID and then click that but-
ton.  Click on GRAPH in the snns-manager panel to open up the graph window.  This gives you a 
visual representation of how well the network is learning. SSE (sum of squared errors) will be 
plotted; you will probably need to change the y-axis range, either after the specified number of 
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cycles has been completed or after clicking STOP (click ALL to resume). Test results are shown in 
red on the plot.

13. In the SNNS control panel, click on ALL to start the training cycles.  The command-line window 
where you started snns should start printing out a progress report.  Generally, you want to train the 
network until the MSE goes below 0.001 (you may or may not be able to achieve this).

14. Once the network has been trained adequately, click FILE and save it with a name 
<network_name>.net.

TIPS: You’ll get a better final result if you decrease the learning rate to 0.1 as the network gets closer
to a solution. Watch out for overtraining and overfitting: the MSE for the training and test data should
be about the same.  Sometimes, the errors for the test data will start going up (not the small random
fluctuations) even while the training error is going down.  That means that the network is starting to
overfit the data, although this is highly unlikely if the number of cases in the training file is large.
Training typically  takes from 6 to 24 hours (Sun Ultra 1, Model 170, 17000 cases each for training and
testing). The standard backprop method with momentum may work better than standard backprop. Set
the learning rate to 0.2 (the first of four value boxes) and the momentum to 0.5 (second box; leave the
third and fourth boxes at the default of 0).  

SNNS Batch File

Edit the SNNS batch file train.bat (see the SNNS manual for details) and run it with the command

batchman -q -f traintest.bat > err

Note: The batchfiles provided with FluxNet have not been thoroughly tested.

EXAMINING THE RESULTS

From the FILE -> RES menu in SNNS the network generated outputs from the training or testing data
can be saved to a file.  Do not include the input patterns but do include the output patterns (the opposite
of the default choices).  To save results for only the test data you’ll need to USE the appropriate data
set in the CONTROL dialog window before saving the results file.  Whatever file is being USEd will be
fed through the network when the results file is saved. The IDL program fluxnet/snns/plotres.pro can
be used, possibly without modification, to plot the difference between the target and output fluxes in
these SNNS results files.

The test input data in fluxnet/testio were generated with the IDL program fluxnet/snns/maketest.pro.
These data were then used to test the final networks.  The IDL program fluxnet/testio/plotdiff.pro
plots the difference between the Streamer fluxes and the fluxes generated by the final FluxNet
programs.

CONVERSION TO C AND IDL

The network file *.net can now be converted to C code using the SNNS command snns2c:

snns2c snns-network-file net.c net

The first argument to snns2c is the name of the network file that you saved in the SNNS session, e.g.,
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16_10.net.  The second argument is the name of the output network C file (with associated net.h file
automatically generated).  Using net.c is simple and clear. The third argument is the name given to the
C function, i.e., the function that you will call to compute fluxes. 

It can also be converted to an IDL procedure with the Unix script snns2idl in the fluxnet/source
directory.  You should first change the network name in the *.net file by editing the line that says
“network name”, changing whatever is there (e.g., “16_10”) to simply “net”.  Then convert it to IDL:

snns2idl snns-network-file > idl-pro-file

Neither the C nor IDL procedures converted from the SNNS network files handle data scaling or input/
output so programs that do the scaling and call these procedures must be written. The fluxnet.c and
fluxnet.pro files are the main programs for FluxNet and can be used as examples for your own design.
The scaling factors must be taken from the mkdatfile*.c code, inverting the scaling equations for the
output variables.  The next section describes how to compile the C modules into an executable.  For
IDL (version 4.0 and higher), the procedures generated by snns2idl should be combined with the
driver procedure as described in the fluxnet/source/README file and in main.pro.

BUILDING THE EXECUTABLE

The following example is for compiling fluxnet (or fluxnet.exe). The procedure is the same for
fluxnetp (using netp). Compile the main program fluxnet.c and the network file net.c (generated by
SNNS):

cc -O fluxnet.c net.c -lm -o fluxnet (basic Unix; use “gcc” for Linux)
bcc fluxnet.c net.c (Borland C; use “cl” for Visual C)

You should now have the executable file fluxnet or fluxnet.exe.
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9 REVISION HISTORY

The following table gives a brief description of the changes in each major and minor release of
FluxNet.

Version Date Modifications

4.0 October 1, 2001 Changed profile levels from pressure to sigma levels; 
changed cloud pressure input to cloud temperature; 
added many colder and higher elevation polar profiles 
to training; trained with Streamer v3.0.

3.1 1 June 2001 Changed input profile levels from pressure to sigma 
levels, so input files that use profiles are not compati-
ble with previous versions; retrained the network with 
Streamer v3.0; added a normal random number gen-
erator for better sampling of some variables in train-
ing; added another sample application.

3.0 15 July 1999 Added TOA fluxes to output; added surface type to 
input; expanded ranges of some of variables.

2.1.1 5 April 1999 Modified manual to reflect “bug” in specification of 
cloud water content.  Important!

2.1 9 Sept 1997 Retrained with greater number of dark and clear sky 
cases; streamlined run.f.

2.01 22 May 1997 Fixed bug concerning incorrect cloud top temperature 
in Streamer run.

2.0 20 April 1997 One network outputs shorwave and longwave fluxes; 
redesigned network for use with global TOVS pro-
files; simplified steps for redesign and implementa-
tion.

1.0 28 Aug 1996 Version 1.0 release. Expanded the albedo range for 
snow; revised the documentation.

1.0B 16 July 1996 First Beta test release.
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