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Abstract: An effective blended Sea-Ice Concentration (SIC) product has been developed that utilizes
ice concentrations from passive microwave and visible/infrared satellite instruments, specifically the
Advanced Microwave Scanning Radiometer-2 (AMSR2) and the Visible Infrared Imaging Radiometer
Suite (VIIRS). The blending takes advantage of the all-sky capability of the AMSR2 sensor and the
high spatial resolution of VIIRS, though it utilizes only the clear sky characteristics of VIIRS. After
both VIIRS and AMSR2 images are remapped to a 1 km EASE-Grid version 2, a Best Linear Unbiased
Estimator (BLUE) method is used to combine the AMSR2 and VIIRS SIC for a blended product at
1 km resolution under clear-sky conditions. Under cloudy-sky conditions the AMSR2 SIC with bias
correction is used. For validation, high spatial resolution Landsat data are collocated with VIIRS
and AMSR2 from 1 February 2017 to 31 October 2019. Bias, standard deviation, and root mean
squared errors are calculated for the SICs of VIIRS, AMSR2, and the blended field. The blended
SIC outperforms the individual VIIRS and AMSR2 SICs. The higher spatial resolution VIIRS data
provide beneficial information to improve upon AMSR2 SIC under clear-sky conditions, especially
during the summer melt season, as the AMSR2 SIC has a consistent negative bias near and above the
melting point.

Keywords: Arctic; sea ice concentration; melting ice; high spatial resolution; blending technique;
best-linear unbiased estimator; thermal infrared; visible; NDSI; passive microwave; uncertainties;
VIIRS; AMSR2; Sentinel; Synthetic Aperture Radar

1. Introduction

Sea-Ice Concentration (SIC) is the fraction of the sea surface covered by ice over some
area, typically the satellite field of view (pixel). SIC is important in applications such as
marine transportation, coastal erosion and its prevention, natural resource exploration,
fisheries, subsistence hunting, and wildlife management and research. Sea ice influences
the surface energy budgets and moisture exchange between the atmosphere and the
underlying water. Thus, it is a key factor in atmospheric and oceanic circulation and is
an essential component for numerical weather forecasting and climate modeling. Over
the past few decades, Arctic sea ice has changed dramatically with decreases in sea ice
extent [1], coverage [2], and volume [3]. These changes are associated with rapid increasing
surface temperatures [4], heat [5], and moisture fluxes [6] and decreasing surface albedo [7],
and changes in cloud properties [7] and atmospheric stability [8] in the Arctic. Arctic
climate change is potentially connected to midlatitude changes through shifting global
scale jet stream patterns, resulting in more extreme weather events [9–11].

Due to the remote and harsh conditions over the sea ice, ground-based observations
of the SIC are extremely limited. With their high spatial and temporal coverage over the
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polar regions, polar-orbiting satellites have been crucial in observing changes in Arctic sea
ice for more than four decades. Satellite observations utilizing the microwave portion of
the electromagnetic spectrum can provide the SIC under all weather (clear and cloudy-sky)
conditions. A recent and widely used passive microwave satellite is the Japan Aerospace
eXploration Agency (JAXA) Global Change Observation Mission–Water (GCOM-W) carry-
ing the Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument. Several sea ice
algorithms, such as the NASA Team (NT) algorithm, the enhanced NT algorithm (NASA
Team-2), the Bootstrap (BS) algorithm, and the ARTIST Sea Ice (ASI) algorithm, have been
used to estimate the SIC. More specific details on these types of sea-ice-derived products
are given in [12–16]. Another type of satellite instrument that has been used in observing
the sea ice utilizes the visible and infrared (IR) portions of the electromagnetic spectrum.
SIC products have been generated for visible/IR imagers, such as the Advanced Very High
Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer
(MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS). More details on the
sea ice products derived from VIIRS are given in [17–22].

While passive microwave instruments provide sea ice information under all-weather
conditions, they do so with relatively low spatial resolution, for example, 10 km for NASA
Team-2 [23,24] and 6.25 km for the ASI algorithm [25]. For this study, SIC products based
on the NASA Team-2 algorithm utilizing the 18, 36 and 89 GHz channels are used [16].
While AVHRR, MODIS, and VIIRS SIC products are only for clear-sky conditions, these
products provide information at a higher spatial resolution, up to 0.375 km for VIIRS.
With emerging weather and climate models that have sub-kilometer grid spacing [26,27],
boundary layer conditions with 1 km and sub-kilometer resolutions may be needed. Such
high spatial resolution SIC products are also key in the study of processes with small spatial
scales such as sea ice leads (fractures), and are relevant to operational analyses supporting
navigation and other activities in sea ice regions [28]. Previous work has been undertaken
in optimizing different passive microwave SIC retrievals [29] and combining visible and
thermal infrared MODIS SIC with passive microwave AMSR2 SIC [30]. The combined
satellite product discussed in [29] has been shown to have particularly good agreement
with other SIC products and independent sea-ice cover data [31].

In this paper we present a new, high spatial resolution SIC product for all-weather
conditions through an optimal blending of the SIC products from AMSR2 and VIIRS. We
use the Best Linear Unbiased Estimator (BLUE) method to combine sea ice products from
the all-sky, lower spatial resolution AMSR2 and the clear-sky, higher spatial resolution
VIIRS for a blended SIC product. Landsat 8 data are employed to perform a validation of
the individual AMSR2 and VIIRS SIC, and the blended fields. Qualitative comparisons to
natural color Sentinel-2 images and Sentinel-1 Synthetic Aperture Radar (SAR) for individual
cases are shown. Special attention is paid to the quality of these products in melting sea ice
environments. Our product differs from Ludwig et al. [30] in the blending methodology and
in the seasonal applicability. More details of the differences are in Section 4. The blended
SIC product presented here has been routinely generated at the National Oceanic and
Atmospheric Administration (NOAA)/University of Wisconsin—Madison Cooperative
Institute for Meteorological Satellite Studies (CIMSS) since 2018. While it is currently a
research product, validation results indicate that it can be a viable operational, near-real-
time product.

2. Data and Method

An algorithm has been developed to detect ice and estimate SIC in clear-sky areas over
the ocean and inland lakes and rivers using VIIRS [18] on board the S-NPP and NOAA-20
satellites. A threshold method is used to discriminate between ice and open water. A tie-
point algorithm is then applied to determine the representative visible reflectance (daytime)
or ice surface temperature (nighttime) of the pure ice cover at the center of a sliding search
window with a size of 50 by 50 km. SIC at the center of the search window is then retrieved
from its observed reflectance/ice surface temperature [18]. This product has a spatial
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resolution of 750 m, the spatial resolution of the VIIRS’s moderate resolution bands. An
example of a daily composite of VIIRS SIC over the Arctic remapped to 1 km grid is shown
in Figure 1a. The clear/cloudy conditions are determined by the cloud mask derived from
the VIIRS M-band data. Only confidently clear pixels are used in SIC estimates to limit
the effect of cloud contamination. We use the NASA Team 2 algorithm to retrieve SIC
with AMSR2 [32], which provides estimates in all-weather conditions (Figure 1b). Their
spatial resolutions are relatively coarse—10 km EASE Grid version 2 resolution [33,34].
The uncertainties of passive microwave SIC of up to 20% are relatively larger over regions
where there are rapid changes over short spatial and temporal scales, such as the marginal
ice zones, coastal areas, regions of melting and freeze-up, over thin ice and melt ponds,
and some ice features in the pack ice such as leads and floes [35–38]. Visible data are likely
to produce more accurate summer daylight SIC, because similar microwave emissivities
of melting snow/ice, melt ponds on the ice, and open water result in large biases and
uncertainties in the passive microwave estimates [32]. However, as with all visible and
infrared sensors, the VIIRS SIC is only available under clear-sky conditions.
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Figure 1. (a) S-NPP VIIRS; (b) AMSR2; (c) blended AMSR2/VIIRS SIC over the Arctic for 29 July 2019,
remapped to a 1-KM EASE2 grid. SIC values are given by scale (right) from 0–100%. Open water
areas, and cloudy regions, probably or confidently cloudy pixels via VIIRS cloud mask, together with
land surfaces are indicated as missing (white).

A total of 1486 Landsat scenes over the Arctic Ocean from 2017 to 2019 were collected
and collocated with VIIRS. These scenes are only daylight and therefore primarily from
late March through early October with highest density of scenes coming from the well
sunlit summer months of June through August. These scenes are throughout the Arctic
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and confined to areas that are usually within 500 km of a landmass that includes islands.
A Landsat scene is selected if over 90% of all pixels are clear based on Landsat’s own
cloud mask [39]. All the selected scenes are then manually inspected by Arctic cloud
detection experts, the authors, to remove those scenes, in which clouds are not detected
by its own cloud mask. The original spatial resolutions of Landsat and VIIRS are 30 m
and 750 m, respectively. For each Landsat scene, visible and thermal channel observations
at 30 m spatial resolution are available from the Operational Land Imager (OLI) and the
Thermal Infrared Sensor (TIRS). Only daytime images are used because of more spectral
information (shortwave channels) and thus higher confidence in the ice identification
during the daytime and possibly better cloud detection from both VIIRS and Landsat. Each
Landsat clear-sky pixel determined from Landsat’s cloud mask [39] is identified as ice if the
normalized difference snow index (NDSI), calculated from band 5 (0.865 µm) and band 6
(1.6 µm), is larger than 0.45, and if the reflectance at band 5 is higher than 0.08 [18]. Landsat
SIC is at the 1 km spatial grid, the same as the remapped VIIRS. This was calculated as the
ratio of the number of 30 m Landsat ice pixels to the total number of pixels in a 1 km grid
cell. Of the 1486 scenes, 484 scenes or a 31% subset are used to derive the measurement
accuracies and precisions of the collocated VIIRS and AMSR2 SIC, and the rest are used for
independent validation.

We here present a blending approach to optimize all-weather SIC and ice cover
estimates from passive microwave observations (AMSR2) and clear-sky SIC and cover
with very high spatial resolution from visible/infrared observation (VIIRS) to monitor
the ice characteristics effectively under all-weather conditions. The combined use of the
SIC from these two products requires uncertainty estimates for both products compared
to a reference dataset and a robust scheme to combine them. Here, we use SIC derived
from high-resolution Landsat 8 data [40] (hereinafter simply “Landsat”) as the reference
“ground truth”. Uncertainties in the AMSR2 and VIIRS SIC are expressed as the bias (mean
difference, also called the accuracy) and standard deviation (precision) of the differences
between the AMSR2 or VIIRS and Landsat SIC. Before the blending, the AMSR2 and
VIIRS SIC products are remapped to a 1 km EASE Grid version 2 using a nearest neighbor
approach.

Under clear-sky conditions, the Best Linear Unbiased Estimator (BLUE) method [41]
is applied to derive the combined final SIC:

Cclear =

(
σ2

A
σ2

V + σ2
A

)
(CV − DV) +

(
σ2

V
σ2

V + σ2
A

)
(CA − DA) (1)

where Cclear, CA, and CV, are blended SIC, and retrieved SIC from AMSR2 and VIIRS,
respectively; DA and DV are measurement bias between the AMSR2 or VIIRS SIC and the
Landsat SIC (Figure 2); σA and σV are the standard deviations of the differences. For the
pixels under cloudy conditions, the blended SIC is determined as the SIC from the passive
microwave observations with a bias correction. The correction is defined as the retrieved
(observed) AMSR2 SIC minus a bias. The bias is determined through linear interpolation
between the observed SIC and the previously determined bias of the bin into which the
observed SIC falls:

Ccloudy = CA − INTERP(D, xs, CA) (2)

where CA is the retrieved AMSR2 SIC, D is a bias lookup table for a particular SIC bin and
a particular surface temperature range, with xs being the midpoint value inside the SIC
bin. For brevity, 20% intervals are shown from 30 to 90% in Figure 2. The Gaussian fits
are included to show which ranges would work best with the BLUE method. In general,
according to the figure distributions, anything above 50% for AMSR and 30% for VIIRS
should work well in the BLUE.
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Measurement precision (standard deviation) and accuracy (bias) of AMSR2 (Figure 2a)
and VIIRS (Figure 2b) SIC compared to Landsat are calculated for different SIC bins from
0–100%, with lookup tables dependent upon VIIRS and AMSR2 SIC and the VIIRS Ice
Surface Temperature (IST) (Table 1). The surface temperature information is used to
account for the dependence of SIC quality on ice surface conditions, especially for passive
microwave SIC in clear-sky conditions, which are shown in six separate precision and
accuracy tables (see Table 1a–f and Figure 3). The six tables are in one-degree increments
starting from 270.15 K to 274.15 K. Surface temperature above 275 K is considered to be
unfrozen water. In Table 1, the temperature bins further below the freezing point of water
are applied to account for increased salinity values of ocean water that decrease the actual
freezing point temperature of water. In addition, due to a negative skew observed in the
AMSR2 SIC product compared to Landsat for SIC less than 70% (Figure 2a), the VIIRS
SIC with bias correction is only used when SIC differences between AMSR2 and VIIRS are
greater than a certain threshold, set to 20% based on independent comparisons to Landsat
between VIIRS and AMSR2 and when AMSR2 SIC is less than 70% for IST near or above
melting (272.15 ≤ K). This is performed because larger difference between these two values
indicates that one of these retrievals is substantially less accurate, and it is shown that is
likely to be AMSR2 when the SIC is low and in near-melting or melting environments.
Furthermore, VIIRS SIC product comparison to Landsat showing limited skewness and a
more normal distribution suggests better retrieval of VIIRS SIC (Figure 2b). Otherwise, if
these thresholds are not included it would introduce a negative bias to the final blended
product. Results will show that this method works well and improves SIC quality over
the Arctic.

An example of blended VIIRS-AMSR2 SIC is shown in Figure 1c, which clearly
illustrates the significant amount of detail that is provided by the VIIRS SIC product in
various localized regions, for example off the northern and northeast coasts of Greenland
including the Wandel and Lincoln Seas. For the blended SIC, ice cover is defined by pixels
with SIC larger than a certain threshold, which is set to 15%, with anything lower than that
value set zero SIC. The final product has the same spatial resolution as remapped VIIRS
into EASE2 grid at 1 km, with microwave observations interpolated onto the same grid
spatial resolution with a bias correction in regions of cloud cover. The effective resolution of
the blended product lies between 1 km and 10 km, depending on the relative precision, e.g.,
the weights of AMSR2 and VIIRS in the blended product as expressed in Equation (1). In
some conditions, such as in near-melt or melting environments when AMSR2 SIC less than
80% and SIC difference between AMSR2 and VIIRS greater than 20%, the final blended
SIC defaults to VIIRS, and the effective resolution will be 1 km. Additionally, as noted, in
cloudy conditions, when VIIRS is not available, the effective resolution becomes 10 km, the
same as the AMSR2 resolution.
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Table 1. Measurement accuracy and precision (in % concentration) for six ice surface temperature ranges placed as table
headers in bold: The SIC value is set to 0% when calculated to be less than 15% in the blended output, therefore SIC bins
shown start at 10–20%. In tables “Acc” refers to accuracy and “Prec” refers to precision.

(a) Warm (≥274.15 K and ≤275 K)

SIC Bins 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

VIIRS Acc. −25.64 −11.81 −6.86 −7.87 −12.06 −11.29 −7.0 −1.11 5.03

VIIRS Prec. 25.98 20.11 20.70 24.17 24.13 22.74 20.93 19.27 15.82

AMSR2
Acc. −39.91 −23.87 −27.39 −26.45 −23.62 −21.06 −14.92 −5.86 5.57

AMSR
Prec. 23.86 26.48 28.37 26.66 23.80 19.93 17.31 18.10 19.24

(b) Melt (≥273.15 and <274.15 K)

SIC Bins 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

VIIRS Acc. −20.69 −15.20 −8.54 −10.23 −13.45 −10.53 −5.2304 0.64 6.46

VIIRS Prec. 21.52 22.73 23.27 26.26 25.29 23.31 21.37 19.28 15.42

AMSR2
Acc. −50.24 −45.34 −34.51 −30.63 −25.40 −18.69 −10.53 −4.62 3.06

AMSR
Prec. 29.73 28.51 28.36 26.14 23.48 21.85 19.78 17.20 13.10

(c) Near-Melt (≥272.15 and <273.15 K)

SIC Bins 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

VIIRS Acc. −23.85 −15.94 −15.57 −12.66 −9.29 −6.34 −2.28 1.85 6.47

VIIRS Prec. 23.35 21.65 24.90 24.92 24.76 23.97 22.58 20.08 16.0

AMSR2
Acc. −37.23 −35.86 −21.12 −18.05 −15.91 −13.71 −9.89 −4.29 3.93

AMSR
Prec. 27.52 27.71 27.37 27.09 25.62 22.97 20.84 18.03 13.06

(d) Freezing (≥271.15 and <272.15 K)

SIC Bins 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

VIIRS Acc. −28.12 −21.94 −21.29 −14.81 −10.86 −6.09 1.98 2.17 6.80

VIIRS Prec. 24.93 24.54 26.86 25.71 24.77 24.08 22.35 20.06 16.13

AMSR2
Acc. −34.89 −30.73 −19.15 −15.92 −13.38 −11.05 −7.61 −2.49 5.56

AMSR
Prec. 22.06 26.37 25.70 26.43 25.70 23.99 21.93 19.31 14.16

(e) Mostly Frozen (≥270.15 and <271.15 K)

SIC Bins 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

VIIRS Acc. −25.50 −21.86 −24.11 −15.27 −10.17 −5.56 −1.37 3.25 8.19

VIIRS Prec. 25.66 24.36 27.04 25.84 25.00 24.55 23.38 21.38 17.35

AMSR2
Acc. −31.67 −33.93 −16.51 −15.31 −13.77 −11.25 −7.05 −0.96 6.99

AMSR
Prec. 26.81 28.19 25.83 25.90 25.80 23.67 21.76 20.22 16.57

(f) Solid Frozen (<270.15 K)

SIC Bins 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

VIIRS Acc. −4.77 3.62 −2.59 −4.45 −1.72 −1.86 0.22 1.91 2.12

VIIRS Prec. 17.44 19.79 23.39 26.39 25.66 23.60 22.24 18.28 9.85

AMSR2
Acc. −16.23 −14.27 −12.94 −10.10 −8.22 −6.24 −2.95 −2.31 2.62

AMSR
Prec. 22.05 24.21 23.59 23.86 23.01 21.85 18.50 13.78 12.09



Remote Sens. 2021, 13, 2982 7 of 19Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 3. Graphical representation of precisions (top) and accuracies (bottom) for (a) AMSR2 and (b) VIIRS from Table 1 
for the various IST conditions. 

An example of blended VIIRS-AMSR2 SIC is shown in Figure 1c, which clearly illus-
trates the significant amount of detail that is provided by the VIIRS SIC product in various 
localized regions, for example off the northern and northeast coasts of Greenland includ-
ing the Wandel and Lincoln Seas. For the blended SIC, ice cover is defined by pixels with 
SIC larger than a certain threshold, which is set to 15%, with anything lower than that 
value set zero SIC. The final product has the same spatial resolution as remapped VIIRS 
into EASE2 grid at 1 km, with microwave observations interpolated onto the same grid 
spatial resolution with a bias correction in regions of cloud cover. The effective resolution 
of the blended product lies between 1 km and 10 km, depending on the relative precision, 
e.g., the weights of AMSR2 and VIIRS in the blended product as expressed in Eq. 1. In 
some conditions, such as in near-melt or melting environments when AMSR2 SIC less 
than 80% and SIC difference between AMSR2 and VIIRS greater than 20%, the final 
blended SIC defaults to VIIRS, and the effective resolution will be 1 km. Additionally, as 
noted, in cloudy conditions, when VIIRS is not available, the effective resolution becomes 
10 km, the same as the AMSR2 resolution. 

3. Results 
In this section, a case study comparing Landsat SIC to AMSR2, VIIRS, and blended 

SIC will be shown, including a robust quantitative analysis of the similarities and differ-
ences between the products. Next, a Sentinel-2 multispectral image in a melting sea ice 
environment will be compared to the SIC products. VIIRS ice surface temperature is then 
used to investigate the performance of the individual and blended SIC products in melt 
conditions. In the Discussion section, two winter scenes will be qualitatively compared to 
Synthetic Aperture Radar (SAR) and 4-km daily SIC from the blending of AMSR2 NASA 
Team-2 SIC and the Multisensor Analyzed Sea Ice Extent (MASAM2) product to demon-
strate the potential quality of the blended SIC product in the dark winter conditions, with 
further discussion on how to improve the blended SIC from this point forward. 

3.1. Case Study 
First, we show the results of a regional case study, comparison between AMSR2, 

VIIRS, and the blended SIC versus Landsat SIC over the Fram Strait (between Svalbard 
and Greenland) and the Wandel Sea (northeast of Greenland and north of the Fram Strait) 
on 1 August 2019 (Figures 4 and 5). The results from this primarily cloud-free scene show 
the ability of the blended product to improve upon the all-weather AMSR2 product by 

Figure 3. Graphical representation of precisions (top) and accuracies (bottom) for (a) AMSR2 and (b) VIIRS from Table 1 for
the various IST conditions.

3. Results

In this section, a case study comparing Landsat SIC to AMSR2, VIIRS, and blended SIC
will be shown, including a robust quantitative analysis of the similarities and differences
between the products. Next, a Sentinel-2 multispectral image in a melting sea ice environ-
ment will be compared to the SIC products. VIIRS ice surface temperature is then used to
investigate the performance of the individual and blended SIC products in melt conditions.
In the Discussion section, two winter scenes will be qualitatively compared to Synthetic
Aperture Radar (SAR) and 4-km daily SIC from the blending of AMSR2 NASA Team-2
SIC and the Multisensor Analyzed Sea Ice Extent (MASAM2) product to demonstrate the
potential quality of the blended SIC product in the dark winter conditions, with further
discussion on how to improve the blended SIC from this point forward.

3.1. Case Study

First, we show the results of a regional case study, comparison between AMSR2,
VIIRS, and the blended SIC versus Landsat SIC over the Fram Strait (between Svalbard
and Greenland) and the Wandel Sea (northeast of Greenland and north of the Fram Strait)
on 1 August 2019 (Figures 4 and 5). The results from this primarily cloud-free scene
show the ability of the blended product to improve upon the all-weather AMSR2 product
by resolving smaller features in the ice field, such as large ice floes and a more detailed
ice edge. Specifically, the large floe features in the VIIRS SIC off the coast of Greenland
and in the Fram Strait are retained by the blended product, for example the rectangle
region in Figure 5b. Additionally, SIC is improved in heterogeneous pockets over the
interior pack ice over the Fram Strait in the northeast quadrant (circle region in Figure 5c)
where it is underestimated by VIIRS. The areas where the blended SIC diverges from
Landsat are the northernmost region of the Wandel Sea (oval region in Figure 5e), near the
immediate coastline of Greenland, and along the northern ice edge with the southeast ice
field (oval in Figure 5b), where the blended product overestimates sea ice due to VIIRS
cloud masking and overestimation by AMSR2. The differences from Landsat and the
blended product could be the result of rapid melt and ice deterioration between VIIRS
overpasses and Landsat, and that the VIIRS overpass closest in time (36 min) to Landsat
was at the swath edge where smaller scale features in the field are smeared by the sensor
bow-tie correction [42]. Furthermore, the visible/IR ice product can only be as good as the
cloud mask, and as an example, if the cloud mask is too passive in cloud detection, that
will lead to an overestimation of sea ice with misidentification of undetected ice cloud as
sea-ice cover. Another influence could be ice drift and assuming ice moves at 5 cm/s, and
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1 h time difference means 180 m spatial distance between the scenes from two satellites [43].
The best measure of how the blended product performs is a quantitative analysis (Figure 6).
The quantitative comparison for this scene indicates improved bias, standard deviation
of differences, and Root Mean Square (RMS) difference statistics of the blended product
versus the estimates from the individual AMSR2 and VIIRS sensors when compared to
Landsat SIC. AMSR2 has a negative bias while VIIRS has a positive bias of about the same
magnitude of a little over 5%. The AMSR2 bias is the result of underestimation of the
SIC associated with large ice floes and along the sea ice edge and marginal ice zone. The
positive bias of VIIRS is the result of overestimation SIC in the northwest marginal ice
zone (Figure 5e) and heterogenous areas of the pack ice (Figure 5c). Overall, the VIIRS
SIC produces a higher frequency of zero bias compared to both AMSR2 and blend. To
determine the significance of the blended product superiority to VIIRS and AMSR2, a
much larger sample size of cases is required. An analysis of a much larger sample size is
the topic of the next section.
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Figure 5. SIC over the Fram Strait and Wandel Sea, off northeast coast of Greenland and west of Svalbard on 1 August 
2019 (box A in Figure 4). (a) AMSR2 (composite of 10:47 and 12:24 UTC overpasses); (b) blended; (c) VIIRS (composite of 
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Figure 5. SIC over the Fram Strait and Wandel Sea, off northeast coast of Greenland and west of Svalbard on 1 August 2019
(box A in Figure 4). (a) AMSR2 (composite of 10:47 and 12:24 UTC overpasses); (b) blended; (c) VIIRS (composite of 13:28,
15:12 and 16:53 UTC overpasses); (d) Landsat Natural Color Image from USGS; and (e) the derived Landsat SIC at 17:29
UTC. Blue indicates SIC closer to zero, with red indicating SIC closer to 100%.
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3.2. Comparison to Landsat 8

An analysis of SIC between VIIRS, AMSR2, the blended, and Landsat SIC for multiple
days from 2017 to 2019 was completed for this study (Figure 7). Over this period, any
differences of greater than 20% between the blended and either the AMSR2 or VIIRS SIC
were cataloged and compared to Landsat-derived SIC (if available for that day). Overall,
a total of 1002 Landsat scenes remapped into 1 km EASE2 grid cells that were not used
in training blending model, Equations (1) and (2), were compared to the blend, AMSR2
and VIIRS. These scenes were determined to be mainly clear and during daylight. Differ-
ence distribution histograms compared to Landsat are shown in Figure 7. For a total of
9,666,807 collocated 1 km grid cells, the blended product produces the lowest standard
deviation and RMS errors during daylight conditions compared to Landsat. Due to the
independent Landsat dataset being limited to daylight conditions, the quality of dark winter
conditions is unknown at this time. Furthermore, AMSR2 has the lowest bias, but the
largest standard deviation error. On the other hand, the blended SIC product significantly
reduces the standard deviation of the errors of AMSR2 SIC while also reducing the VIIRS
positive bias. However, even with improved statistics, the blended SIC product has a slightly
negative skew with a local maximum at around −8% and retained long positive tail. The
negative skew is caused by the non-normalized asymmetric distribution of the AMSR2 SIC
compared to the reference dataset, and the positive tail is hypothesized to be due to ice
cloud contamination in VIIRS and the positive tail of AMSR2 in coastal sea ice, which will be
shown later. It is expected that the positive tail will be mitigated with the planned migration
to an improved, “enterprise”, cloud mask that utilizes Bayes’ theorem and includes cloud
probabilities, thereby allowing for fine tuning of the cloud mask settings [44]. A further
discussion of how to reduce the skew and positive tail of the distribution of differences is
given in the summary and conclusion section.

3.3. Melting Ice Conditions

Next we investigate the performance of the product under melting ice conditions,
which is a significant contributor to the differences observed between VIIRS and AMSR2
SIC values. Figure 8 (see Figure 4 for location) shows a case study over the southern Hudson
Bay on 18 June 2018. In this case there is significant melting of the sea ice as determined
by VIIRS IST values near and above the melting point. AMSR2 SIC over the region is
predominantly in the range of 80–90%, while VIIRS produces SIC in the range of 90–100%,
or 10–20% higher than AMSR2. The blended SIC retains many of the features present in the
VIIRS SIC with overall SIC around 90%. The Sentinel-2 Multi-Spectral Instrument Level-1C
data (S2MSI1C) composite for the same day and close proximity in time (60 min) indicates
dense sea-ice coverage 50–100 km from the south coast of Hudson Bay. Qualitatively, it
appears that AMSR2 underestimates the sea-ice coverage while VIIRS and blended SIC
matches more closely to what is seen in the Sentinel-2 image. However, one issue with
the blended SIC in this case is that it overestimates the SIC near the coast because of the
widespread ice coverage present in the AMSR2 product, where the VIIRS cloud mask seems
to be too conservative in flagging water grid cells as cloud-covered. It has been shown that
in comparison to the Interactive Multisensor Snow and Ice Mapping System (IMS), AMSR2
tends to overestimate sea ice near coastlines [45]. AMSR2 can overestimate SIC near the
coast due to coastal contamination, i.e., ocean grid cells containing sensor footprints that
overlap the coast and have emission from both ocean and land. Generally, the overestimate
in SIC is retrieving a non-zero concentration where no ice exists. The mixture of ice-free
ocean and land has a signature similar to sea ice. A land-spillover filter removes some of
this false ice, but not all of it.
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For quantitative analysis, a similar period detailed in Section 3.2 is processed by
comparing AMSR2 and VIIRS SIC over an IST range starting from 230 to 275 K (Figure 9).
First, AMSR2 has a consistent negative difference of 1 to 2% compared to VIIRS due to
VIIRS producing sharper SIC gradients along the sea ice edge and the inability of AMSR2
to resolve small feature such as floes and leads in the pack ice. Most notably, it shows the
rapid drop in the bias of AMSR2 SIC compared to VIIRS for IST starting at 272 K with a bias
of +2% to 275 K with a bias of −8%. As the ice deforms in melting environments, surface
water contamination leads to underestimation of the AMSR2 SIC [24,45,46]. The sharp rise
in bias from −2% to +2% as IST approaches 270 K will require additional investigation,
though it is hypothesized that it is due to the freeze-up condition and the formation of new
grey ice that would be underestimated by VIIRS in NDSI calculation [20,47].
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First, AMSR2 has a consistent negative difference of 1 to 2% compared to VIIRS due to 

Figure 8. Over south-central Hudson Bay on 18 June 2018 (B in Figure 4). From upper-left to lower-
right: (a) S-NPP VIIRS SIC (0–100%) where clear skies exist determined by the VIIRS cloud mask;
(b) AMSR2 all-weather SIC (0–100%); (c) S-NPP VIIRS IST (270–275 K); (d) the blended SIC; and
(e) Sentinel-2 Natural color image over the same region for the same day. Both VIIRS and AMSR2
observation times are around 18 UTC, while Sentinel-2 is 16:56 UTC.

Finally, histogram difference distribution plots in Figure 10 show all cases where
the VIIRS IST is at or above the melting point. The AMSR2 SIC in these conditions
have a significant negative skew compared to Landsat, while VIIRS SIC has a Gaussian
distribution. The final blended SIC product produces the overall lowest bias, standard
deviation and RMS differences compared to Landsat. However, the final blended SIC does
have a negative skew that is maximum at −7%. Even so, it still outperforms the individual
AMSR2 and VIIRS products in error measurements.
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Figure 9. AMSR2 and VIIRS SIC compared to VIIRS IST (K) for each degree with the temperature range
starting from 230 to 275 K (x-axis). The SIC difference (AMSR2-VIIRS) or bias is on the y-axis. The green
line is the melting point of freshwater (273.15 K). These results encompass the period starting 1 February
through 31 December 2018, 10 March through 31 December 2019, and 1 January to 26 June 2020.
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water (273.15 K) for sea ice of (a) AMSR2, (b) S-NPP VIIRS, and (c) blended product, compared to Landsat.
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4. Discussion

There is the potential for further improvements to the blended concentration product.
First, more in-depth investigation of the product during the winter season utilizing SAR
on the Sentinel-1 satellite is feasible [48]. Unfortunately, at the present time the lack of
an available operational SAR SIC product makes validation in the dark winter season
limited to qualitative comparison with level 1B HH + HV polarization imagery, as shown
in Figure 11 (see Figure 4 for locations). Compared to the MASAM2 SIC product [49] from
the same day, the blended shows more detail over the pack ice with sharper gradients at
the sea ice edge with blended (MASAM2) having more higher (medium) range SIC. Once a
reliable SAR SIC product becomes available then a quantitative analysis can be performed.
Furthermore, it will be possible to include SAR SIC into the final blended product.
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Figure 11. On December 9, 2018: (a) Sentinel-1B HH + HV SAR images, (c) blended SIC, and
(e) MASAM2 SIC over Kara Sea near Novaya Zemlya at 02:34 UTC (box D in Figure 4) and (b) Sentinel-
1B HH + HV SAR images, (d) blended SIC, and (f) MASAM2 SIC over Franz Josef Land at 04:11UTC
(box C in Figure 4).

In this study, validation focused on the Arctic melt season (March–September), with
limited cases from the initial freeze-up season (October–November). In future work, we
will focus on the early freeze-up season cases that are available during the limited sunlit
days of late September into October and early November. This will allow for additional
evaluation of accuracy and precision for near-melt or near-freeze conditions to be used in
the BLUE for the freeze-up season.

Next, more comparisons to Landsat in areas of coastal ice (within 50 km of the
coastline) is necessary to build a separate lookup table of accuracies and precisions to
reduce the positive bias seen in Figure 8. This is likely caused by the combination of SIC
overestimation by AMSR2 as seen in comparison to the IMS [45] and too conservative
cloud masking in coastal locations. An additional lookup table for locations that are within
50 km of the shoreline in optimal blending is expected to remove the issue seen in Figure 8.

It will also be possible to include very high resolution I-band (375 m) SIC from VIIRS
into the blending technique. The lack of a VIIRS I-band atmospheric correction 12 µm
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channel that is used in the “split window” method [50] for surface temperature in the VIIRS
M-band (750 m) makes the creation of a VIIRS I-band IST product challenging. However,
in [51], a validated, high quality 375 m resolution single-band IST product is shown.
Additionally, experimental I-band SIC from VIIRS is currently being routinely produced
at UW-CIMSS. With the use of an I-band SIC and IST values from VIIRS, developing a
blending product at even higher resolution (i.e., 500 m) is feasible. Finally, it would be
helpful to include ice thickness information in the blended product. As shown in [30], the
quality of SIC from passive microwave is dependent on ice thickness. With the use of the
sea ice thickness product from VIIRS [52] there is potential to include this information in
an optimal blended SIC product.

Another potential improvement is enhancing the resolution of AMSR2. Where VIIRS
is unavailable due to clouds, the effective resolution degrades to the 10 km resolution
of AMSR2 SIC interpolated down to 1 km grid cells. Approaches that relate the sub-
10 km variability in the VIIRS areas could be used to simulate higher resolution in the
AMSR2-only regions. Another avenue would be to take advantage of passive microwave
resolution enhancement techniques to synthesize higher resolution based on overlapping
sensor footprints and the sensor footprint characteristics. This method [53] has already
been successfully applied to create a brightness temperature product of earlier passive
microwave sensor [54] and application to sea ice fields has shown the capability to enhance
the effective gridded resolution of SIC fields by at least a factor of two [55]. AMSR2 is
planned to be added to the brightness temperature product (M.J. Brodzik, NSIDC, personal
communication). Thus, an AMSR2 SIC product at 3.125 km or higher resolution will
be feasible. Furthermore, it will become necessary to improve the interpolation of the
lower resolution AMSR2 (10 km) into higher resolution VIIRS (1 km), in order to reduce
blocky SIC pixilation and improve the effective resolution of the blended SIC. The current
blending approach could miss or underestimate SIC in smaller scale features from VIIRS
when the AMSR2 SIC is greater than or equal to 80%, or when SIC difference between
AMSR2 and VIIRS is less than 20%, as is common in conditions colder than 272.15 K. For
example, in a hypothetical situation where VIIRS detects a sea ice lead with SIC of 45% and
AMSR2 measures 95% SIC for same feature, given an IST of 269 K, the blended SIC from
Equation (1) and Table 1 would be 78.9%. While the blended technique would still observe
the lead feature, it would overestimate the VIIRS SIC by over 30%.

The results presented are complementary to similar work on merged SIC presented in
a paper by Ludwig et al. (2020) [30]. Our approach has significant differences and performs
better under certain conditions. Both approaches present an optimal blending of passive
microwave AMSR2 with higher resolution thermal infrared and visible SIC products.
However, we use higher spatial resolution VIIRS (750 m), while [30] uses slightly lower
spatial resolution MODIS (1 km). Secondly, while both use passive microwave AMSR2,
we use NASA Team-2 algorithm, while [30] uses the ASI algorithm. Thirdly, though both
blends are produced at 1 km resolution, the uniqueness of the work presented here is that
it utilizes the BLUE technique for blending SIC in all seasons, while [30] uses a 5 × 5 km
tuning technique that preserves the mean AMSR2 SIC and utilizes only the thermal channel
that is more applicable to subfreezing or non-melting ice conditions. The method provided
here may be more appropriate for melting ice conditions, as it utilizes the visible as well as
thermal channels. It is shown that the RMS in this merged product is shown to be below
17% while in [30] the uncertainty in May is 18% with no further validation performed in the
summer season due to the thermal channel limitation. Importantly, our method could be
used for all seasons, while the method presented in [30] would still be useful for retaining
smaller and more detailed features from higher resolution thermal/visible sources, such
as leads in non-melting ice conditions. It is also worth mentioning that this paper uses
lower resolution (30 m) Landsat as validation, while paper [30] uses higher resolution
(10 m) Sentinel-2. Finally, we provide a more robust and significant sample size over a
larger portion of the year (February–October) and validate the method over multiple years
(2017–2019).
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The primary uses of this product are for real-time ice services, numerical modeling,
and climate monitoring. Operational ice analysts at the national ice services in the U.S.,
Canada, Europe, and elsewhere can use the blended ice concentration product directly
in real-time assessments of ice conditions. The product can also be used as a first guess
in the construction of ice charts, thereby sparing the analyst from having to synthesize
the multisensor data themselves. The blended product will also be an improvement over
single-sensor products in planning for commercial shipping, coastal activities and damage
prevention, wildlife management, and natural resource exploration. Furthermore, a higher
quality ice concentration product can improve numerical weather prediction in models
that assimilate ice conditions and will provide a better verification tool for those that do
not. Lastly, a reprocessed AMSR2-VIIRS ice concentration product will provide almost a
decade-long record for studies of recent changes in sea ice.

5. Summary and Conclusions

In this paper we demonstrate the efficacy of a blended AMSR2-VIIRS sea ice concen-
tration (SIC) product that improves upon the individual AMSR2 and VIIRS SIC products.
By optimizing both products with the Best Linear Unbiased Estimator (BLUE) blending
technique, the outcome is an improved product that enhances the strengths and diminishes
the weaknesses of each individual SIC dataset. The strength of the VIIRS SIC is its high spa-
tial resolution, capability to retrieve the ice surface temperature (IST) with the availability
of split IR windows at 10 and 11 µm channels, and its identification of specific ice features
such as floes, leads, brash ice, ice islands, polynyas, and a more accurate SIC under melting
ice conditions and in determination of the of the ice edge. The strengths of AMSR2 SIC are
its all-weather capability, ability to detect ice under clouds and the detection of new grey
ice for BS [46] and NASA Team-2 [24] algorithms. A case study in the Greenland Sea and a
multiyear analysis with Landsat confirm the superiority of the blended product over both
VIIRS and AMSR2.

This study also focuses on melting surface ice environments, in which the AMSR2 SIC
has negative bias compared to Landsat and VIIRS. This is likely due to increased surface
water content causing AMSR2 to misidentify surface ice as water. A case study with an
extremely high resolution (10 m) natural color Sentinel-2 image composite along with
a multiyear comparison to Landsat SIC over melting surface ice environments confirms
this. It is also found that VIIRS SIC over these environments performs better than AMSR2.
The Gaussian distribution of the differences of VIIRS versus Landsat SICs allows for the
VIIRS product to be more easily utilized in the BLUE equation. Therefore, only a VIIRS
bias correction is used when the surface temperature is near or above melting with SIC
differences between VIIRS and AMSR2 at or above a threshold, e.g., 20%.

Furthermore, this study leads to an additional question: why is there a rapid rise
in the AMSR2 bias as IST approaches 270 K? We hypothesize that this may be due to
the inability of the VIIRS ice identification method to detect young grey ice in freeze-up
conditions. Additionally, even with improved error statistics of the blended product in
melting ice surface conditions, there still exists a negative skew and long positive tail in
the error distribution. The removal of this skew and tail will require additional techniques
such as a Box–Cox transformation or Bayes’ theorem, especially in melting environments.
Additionally, further investigation is needed of coastal SIC and the possibility of including
separate lookup tables to remove the positive bias introduced by AMSR2 when VIIRS
SIC is unavailable due to cloud masking. Even with these remaining issues, the current
blended product is recommended to be utilized in operational applications.
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