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Abstract: Despite accounting for a small fraction of the surface area in the Arctic, long and narrow
sea ice fractures, known as “leads”, play a critical role in the energy flux between the ocean and
atmosphere. As the volume of sea ice in the Arctic has declined over the past few decades, it is
increasingly important to monitor the corresponding changes in sea ice leads. A novel approach
has been developed using artificial intelligence (AI) to detect sea ice leads using satellite thermal
infrared window data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and
the Visible Infrared Imaging Radiometer Suite (VIIRS). In this new approach, a particular type of
convolutional neural network, a U-Net, replaces a series of conventional image processing tests from
our legacy algorithm. Results show the new approach has a high detection accuracy with F1 Scores
on the order of 0.7. Compared to the legacy algorithm, the new algorithm shows improvement,
with more true positives, fewer false positives, fewer false negatives, and better agreement between
satellite instruments.

Keywords: leads; sea ice; MODIS; VIIRS; convolutional neural network; U-Net

1. Introduction

Leads are narrow, quasi-linear fractures in sea ice that form as a result of divergence or
shear within the ice pack. Leads can extend from less than a kilometer to several hundred
kilometers in length. Sea ice leads are an important factor in the energy flux between
the ocean and atmosphere in the Arctic, particularly in winter. In daylight, leads absorb
more solar energy than the surrounding ice due to their lower albedo, warming the water
and accelerating melt. At night, without ice cover, the relatively warm sea water radiates
heat and moisture into the atmosphere. The turbulent heat flux over sea ice leads can
be two orders of magnitude larger than that over the ice surface in winter due to the
air-water temperature difference [1]. Though sea ice leads cover a small percentage of
the total surface area of the Arctic Ocean [2], the heat fluxes dominate the wintertime
Arctic boundary layer heat budget [1,3]. In the winter, spring, and fall, leads impact the
local boundary layer structure [4], boundary layer cloud properties [5], thus affecting the
surface energy balance. Wind and stresses within the sea ice are the primary factors in
the formation of leads [6]. For climate scale studies (on the order of 20 years), trends
in lead characteristics [7] help advance our understanding of both thermodynamic and
dynamic [8,9] processes in the Arctic.

In recent years, there has been a focus on lead detection using moderate resolution
thermal infrared (IR) satellite imagers [10–12]. Sea ice lead characteristics can be derived
from satellite passive and active microwave data [8,13], with the primary advantage being
that clouds are transparent at microwave wavelengths. However, these platforms either
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lack wide spatial coverage or are at such coarse resolution that sea ice fractures are often
too narrow to resolve.

Hoffman et al. [11] uses a series of conventional contextual tests (Sobel, Hough, etc.,)
to detect sea ice leads as areas of high thermal contrast using infrared satellite imagery
from the Moderate Resolution Imaging Spectroradiometer (MODIS), which was later
adapted to the Visible Infrared Imaging Radiometer Suite (VIIRS). This methodology is
referred to as the “legacy” sea ice leads detection algorithm. In recent years, many projects
have investigated the application of artificial intelligence (AI) in sea ice detection and
classification [14–16]. This study presents a novel approach for the detection of sea ice leads
by applying existing AI software [17] toward a new application. In this new approach,
spatial information and trainable AI replace the empirically derived detection algorithm
tests in the legacy technique [11]. The primary objectives are to improve sea ice leads
detection performance and provide continuity between the MODIS and VIIRS sea ice lead
detections.

2. Materials and Methods

For lead detection, the relative temperature contrast between water (warm), ice (cold),
or clouds (warm or cold), is more important than quantifying the brightness temperature.
For this study, thermal imagery is actually a scaled image of radiance counts rather than
brightness temperatures (BT). A contrast enhancement filter is used, each image tile is
scaled from local minimum to local maximum, and pixel values are converted to an array of
bytes (0–255). For computational expediency, and because of the image enhancements, it is
not necessary to convert the raw radiance counts into temperature units. Since temperature
has diurnal, seasonal, and latitudinal variability, normalization removes the potential for
bias based on date or location. The lead detection technique could be applied to the imagery
in the native projection (or another applicable projection), but for this study imagery is
projected into a standard 1 km resolution EASE-Grid 2.0 projection [18]. The imagery
projection also helps reduce the instrument specificity, reduce the possibility for detection
bias as a function of scan angle, and allows the method to be more portable to other
imagery sources.

A key to the detection method is the development of a “derived truth” mask and train-
ing data set. Because of the remoteness of the arctic, ground truth is not readily available.
Hand analysis of satellite imagery serves as the best available option for validation. An
example of the hand analysis workflow is depicted in Figure 1. A leads mask (red) is an im-
age layer drawn on top of a 11 µm brightness temperature image where leads are identified
using a stylus and touch screen in image editing software. The leads mask layer is exported
as a standalone image to be used for training. The “truth” mask and training dataset are
developed with an iterative approach. In the first iteration, hand analysis was used to draw
a leads mask that was readily apparent in a brightness temperature image. Using this hand
analysis, a model was trained and tested. For the subsequent iterations, detection results
from the previous model iteration are used as a starting point. Image editing software again
is used; an eraser tool manually deletes obvious commission errors and drawing tools
add obvious omission errors. The masks do not need to be perfect; the detection model is
functional even if the training dataset included omission and commission errors. Results
improve with each iteration; fewer errors are apparent and less hand analysis is necessary
to edit the truth masks as the detection skill increases. Ultimately, a test case dataset with
“truth” masks was developed for four days, 1 January, 1 February, 1 March, and 1 April all
from 2020. The lead masks are used as a proxy for “ground truth”, representative of leads
that are large enough to be readily apparent in both MODIS and VIIRS.
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Figure 1. Sample screen capture showing a portion of the VIIRS 11 µm brightness temperature gran-
ule from 9 January 2019 at 0342 UTC as a background layer with a leads layer drawn by hand (red) 
where the brightness temperature pattern indicates a lead is likely. 

A particular type of convolutional neural network, a U-Net, was originally described 
in the literature [19] for the field of microbiology as a way to detect cell walls in micro-
scopic imagery. Despite the vastly different physical properties and scales, the U-Net ap-
plication in microbiology example in Figure 2 of Ronneberger et al. [19] is visually similar 
to the U-Net model detection of sea ice leads using satellite imagery example illustrated 
in Figure 2 of this study. A version of U-Net code, as available in an online code repository 
[17], has been applied to detect sea ice leads using the 11 µm brightness temperature im-
agery from MODIS (band 31, AQUA and TERRA imagery, with corresponding geoloca-
tion data [20–23] and VIIRS (I-5, SNPP and NOAA-20 imagery and navigation [24–27] 
north of 60° latitude. A description of the parameters used in the sea ice leads detection 
U-Net model is described in Table 1; a more complete description of the model is available 
in Ronneberger et al. [19] and on GitHub [17].  

 
Figure 2. A small 512 km × 512 km sample of the VIIRS 11 µm brightness temperature image from 
0024 UTC on 1 January 2020 (warm features are bright) in panel (A). The corresponding U-Net grey-
scale image of segmentation results in panel (B). Where the segmentation results are above the de-
tection threshold, the binary lead labels are shown in red in panel (C). 

Table 1. Parameters used in U-Net. 

Parameter Value 
Activation—inner layers Relu 
Activation—last layer Sigmoid 
Loss function Binary cross-entropy 

Figure 1. Sample screen capture showing a portion of the VIIRS 11 µm brightness temperature
granule from 9 January 2019 at 0342 UTC as a background layer with a leads layer drawn by hand
(red) where the brightness temperature pattern indicates a lead is likely.

A particular type of convolutional neural network, a U-Net, was originally described
in the literature [19] for the field of microbiology as a way to detect cell walls in microscopic
imagery. Despite the vastly different physical properties and scales, the U-Net application
in microbiology example in Figure 2 of Ronneberger et al. [19] is visually similar to the U-
Net model detection of sea ice leads using satellite imagery example illustrated in Figure 2
of this study. A version of U-Net code, as available in an online code repository [17],
has been applied to detect sea ice leads using the 11 µm brightness temperature im-
agery from MODIS (band 31, AQUA and TERRA imagery, with corresponding geolocation
data [20–23] and VIIRS (I-5, SNPP and NOAA-20 imagery and navigation [24–27] north of
60◦ latitude. A description of the parameters used in the sea ice leads detection U-Net
model is described in Table 1; a more complete description of the model is available in
Ronneberger et al. [19] and on GitHub [17].
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Figure 2. A small 512 km × 512 km sample of the VIIRS 11 µm brightness temperature image from
0024 UTC on 1 January 2020 (warm features are bright) in panel (A). The corresponding U-Net
greyscale image of segmentation results in panel (B). Where the segmentation results are above the
detection threshold, the binary lead labels are shown in red in panel (C).
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Table 1. Parameters used in U-Net.

Parameter Value

Activation—inner layers Relu

Activation—last layer Sigmoid

Loss function Binary cross-entropy

Optimizer Adam

Learning rate 0.0001

Number of epochs 200

Steps per epoch 30

Batch size 2

The U-Net [17] was developed to work for 512 × 512 pixel imagery. For the application
of lead detection, satellite imagery is remapped to an equal area, 1-km resolution EASE-
Grid 2.0 [18] and then divided into 512 × 512 pixel tiles. For testing, the projected imagery
from each satellite granule is divided into tiles as shown in Figure 3. The tiles are spaced
with 50 pixels of overlap, and the results from the outermost 25 pixel boundary are ignored
to avoid detection artifacts around the tile edges. Sea ice lead detection is attempted for
each tile containing imagery over ocean water, and the resulting tiles are then reassembled
to form a detection mask for each satellite granule.
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Figure 3. The Arctic processing domain. The squares represent overlapping tiles. Lead detection is
attempted north of 60◦ latitude in tiles that contain at least a portion of ocean water—highlighted in
red. The tiles overlap by 50 pixels in all directions; results from the outer 25 pixels are ignored.

For training, 6000 lead mask (label) tiles are generated from the derived-truth masks
along with tiles of the corresponding satellite imagery from MODIS and VIIRS on three
of the four day case study. To separate testing and training, separate input imagery is
used. The models train using brightness imagery averaged over 3-h time-series (multiple
satellite overpasses occur over each 3-h period and temperature imagery is averaged
at these locations), while the test dataset includes individual granule imagery (no time-
averaging). The training imagery spans the polar domain (the domain is on the order
of 7000 × 7000 km, but individual imagery granules only occupy a small proportion of
the domain) and is much larger than the 512 × 512 km/pixel U-Net model domain. To
augment the training data, rather than following the tile pattern shown in Figure 3, (used
when testing the model), training image tiles are randomly positioned within the much
larger polar domain. In this way, an order of magnitude more samples (512 × 512 km
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images) can be generated for training than testing. The same area may appear in multiple
training images, but the amount of overlap is random such that lead features do not appear
at the exact same position in the training dataset, and the samples positions will be different
from those used in testing. To further separate training and testing data—and to avoid
overfitting—previously established data augmentation methods are applied to the training
data [17]: rotation, width shift, height shift, shear, zoom, and horizontal flip. To avoid
edge artifacts, a small buffer region of 50 pixels is used so that there is some overlap in
the coverage tiles but the 25 pixels along the edge are discarded (as depicted in yellow in
Figure 2).

The above method was used to train two models in TensorFlow 2.2.0. One model
trained exclusively with MODIS data, the other with VIIRS data. Each model was trained
with 6000 tiles (512 × 512 pixels): 30 images per step times 200 epochs. As previously
developed [19], loss was calculated with the TensorFlow binary crossentropy loss function.
The U-Net technique used was previously developed [19] and coded in Python [17]; the
intention of this project is only to apply largely off-the-shelf software for a new application—
sea ice leads detection.

Each tile is processed by the U-Net, creating a per-pixel lead prediction array of values
in the range 0–1. That lead prediction array is scaled and interpreted as an 8-bit image,
read as a byte array of U-Net detection score values with pixel brightness ranging from 0
to 255 (as shown in Figure 2B). Each pixel in the scaled leads prediction image is classified
as lead or non-lead based on a detection threshold; lead prediction pixels brighter than
the threshold are classified as leads (as shown in Figure 2C). Illustrated in Figure 4, the
distribution of detection scores overall is bimodal in Figure 4A. In the “Leads” panel,
Figure 4B, the majority of lead scores are well above the detection thresholds. Conversely,
lead-free locations are depicted in the “Non-Leads” panel, Figure 4C, to illustrate that
non-lead detection scores tend to be near zero. The detection thresholds are based on the
receiver operating characteristics (ROC) plot in Figure 5. The detection thresholds are
defined for each satellite as the ROC curve intersection with the 10% false positive rate line,
which is illustrated on the left of Figure 5. On the right of Figure 4, the corresponding false
positive and true positive rates are shown as a function of the maximum daily detection
score. Here the false positive rate is defined as the false positives divided by the total
number of negatives and the true positive rate is the number of true positives divided by
the total number of positives. With the detection thresholds at the intersection of the false
positive curve with the 10% line, the corresponding MODIS detection threshold is 32/255
and the VIIRS detection threshold is 45/255 (both with a 97% true positive rate).
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Figure 5. On the left, the receiver operating characteristic (ROC) curve for MODIS (red) and VIIRS (blue) shows the detection
threshold at the intersection of the 10% false positive rate (with a true positive rate of 97% for VIIRS and MODIS) is selected
as the detection threshold. On the right, the same true positive and false positives curves are shown, but this time as a
function of detection score.

The detection process is repeated for each overpass. After all granules are processed,
daily composite results are recorded in the corresponding MODIS or VIIRS product file
that contains an array with the number of total overpasses, the number of overpasses
with a potential lead detection score above the detection threshold, and the maximum
detection score at each location. A pixel is considered a positively identified sea ice lead if
the U-Net lead detection score is above the threshold in three or more overpasses. While
the detection threshold for a potential lead was defined as having a false positive rate of
10% (as illustrated in Figure 4), by using repeat detection criteria, the false positive rate for
positively identified leads is reduced by approximately 50%. Validation is performed by
comparison of the daily composite results against the hand-derived validation masks.

3. Results

Results from the Beaufort Sea on the first day of January, February, March, and April,
2020 are shown in the multi-panel image in Figure 6 (results from the entire domain are
available in the Appendix A). In this region and for the Arctic in general, the overwhelming
majority of cases are true negatives or “correct negative” (blue), where validation and de-
tection both identify as not a lead. True positives or “hits” (green) are where the validation
mask and detection technique identify a lead; a false positive or “false alarm” (red) is where
a lead is detected despite the absence of a lead in the validation mask. A false negative or
“miss” (black) is where the validation mask contains a lead that is undetected by the given
detection technique. Again, in the absence of ground truth in the Arctic, the masks derived
from hand analysis are used as a proxy for validation. There are more true positives (or
hits, green) with the U-Net than the legacy product. The legacy product is prone to false
negatives (or misses, in black). Through visual inspection of the region shown in Figure 6
and the rest of the Arctic shown in Appendix A, there is significantly more agreement in
terms of co-located detections between MODIS and VIIRS when comparing the U-Net
products, in contrast to the legacy technique, which does not show strong agreement across
satellite platforms. For the April case (far right), persistent cloud cover significantly reduces
the amount of detectable leads in the Beaufort Sea. In the other cases, there appears to be
some evidence of intermittent cloud contamination, but the U-Net is largely able to detect
leads in partly cloudy conditions. In contrast, the legacy lead detection algorithm has a
cloud mask dependency, which prevents lead detection in regions flagged as cloudy, and
this is a factor in the under-detection of leads in the legacy product.
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Table 2. Contingency table, color coded legend for Figure 6 and variable codes for Table 3.

Validation Mask Lead Validation Mask Non-Lead (Sea Ice)

Product lead A (True Positive, “hit”) B (False Positive, “false alarm”)

Product non-lead (sea ice) C (False Negative, “miss”) D (True Negative, “correct negative”)

Table 3. Lead detection statistics for the aggregate results from 1 January 2020, 1 February 2020, 1 March 2020, and 1
April 2020. The percent correct (PC), probability of detection (POD), false alarm ratio (FAR), critical success index (CSI),
Hanssen-Kiuper skill score (KSS), and F1 Score are provided with defining equations for variables defined in Table 2. Results
are reported for positively identified leads with potential leads in parentheses.

PC
A+D

A+B+C+D

POD
A

A+C

FAR
B

A+B

CSI
A

A+B+C

KSS
AD−BD

(A+C)(B+D)

F1 Score
A

A+0.5(B+C)

VIIRS: Positive U-Net (Potential) 94% (88%) 93% (97%) 0.50 (0.68) 0.48 (0.32) 0.88 (0.85) 0.65 (0.48)

MODIS: Positive U-Net (Potential) 95% (88%) 92% (97%) 0.46 (0.68) 0.51 (0.32) 0.88 (0.85) 0.68 (0.48)

VIIRS: Legacy (Potential) 94% (93%) 15% (18%) 0.63 (0.67) 0.12 (0.13) 0.14 (0.15) 0.22 (0.23)

MODIS: Legacy (Potential) 94% (88%) 16% (30%) 0.66 (0.82) 0.12 (0.13) 0.14 (0.22) 0.22 (0.23)
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To avoid errant lead detections in open water, a post-processing step is used to filter
the results by a mask of sea ice concentration [28] so that sea ice leads are only considered
within the largest expanse of continuous sea ice within the Arctic Ocean. The resulting
statistics are given in Table 3. Because of the imbalanced nature of lead distributions—
the proportion of correct predictions (PC) is largely an artifact of the prevalence of true
negatives, and not necessarily an indication of detection skill. The more pertinent detection
metrics are reported and defined in Table 3, the probability of detection (POD, which is also
known as Recall), False alarm ratio (FAR), critical success index (CSI, which also known as
Intersection over Union or IoU), Hanssen-Kuiper skill score (KSS), and F1 Score. Table 2
defines these metrics and reports the results for positively identified leads and potential
leads. The F1 Score is calculated as 2 × ((precision × recall)/(precision + recall)). It is also
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known as the F Score or F Measure. Precision is the number of true positives divided by the
sum of true positives plus false positives, and recall or POD is the number of true positives
divided by the sum of true positives plus false negatives. For completeness, a full suite
of statistics is provided, however the F1 Score and CSI (or IoU) are the most significant
statistics for this application because both give weight to true positives, false positives, and
false negatives, without giving weight to the most common true negative category.

The detection criteria are different between the legacy and U-Net approach, but the
general concept between a potential lead and positively identified lead is similar. In the
legacy algorithm, a potential lead is defined as any area with thermal characteristics of
a lead (primarily high thermal contrast relative to surrounding pixels), and a positively
identified lead is the subset of potential leads that pass a series of conventional tests (Sobel,
Hough, etc.,) [11]. For the U-Net leads, a potential lead is any location with a U-Net
score above the detection threshold, while a positively identified lead is in the subset of
potential lead where the detection occurred in three or more overpasses within the same
day. Depending on the end user’s application—sensitivity to omission or commission
errors, potential leads generally maximize the true positives while positively identified
leads minimize the false positives. As a result, potential leads tend to have higher POD and
KSS scores, but positively identified leads have higher PC, CSI (IoU), FAR, and F1 scores.
In comparison to the legacy technique, the U-Net technique has on the order of six times
the POD and four times the skill scores (CSI, KSS, and F1), while also showing a small
reduction in false detections (FAR). It is also significant to highlight the skill improvement
attained through the repeat detection criteria used to elevate a potential lead to a positively
identified lead. The F1 Score for a U-Net positively identified lead shows more skill
compared against a potential lead, whereas there is no F1 Score improvement between
potential and positively identified leads in the legacy technique. Another measure of
detection skill is illustrated in the precision recall curves in Figure 7 where both MODIS
and VIIRS demonstrate significant detection skill with nearly identical curves and area
under the curve equal to 0.76.
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Figure 7. Precision-Recall curves for MODIS (red) and VIIRS (blue) aggregated from 1 January 2020,
1 February 2020, 1 March 2020, and 1 April 2020. Recall, known as POD, is defined as A/(A + C) and
precision is A/(A + B) from Table 2.

Not only does the U-Net technique show significant improvement in detection skill,
one of the primary motivations to develop a new sea ice leads detection technique was to
achieve better cross-satellite product agreement than was being achieved with the legacy
product. There should be wide agreement between both satellites; only minor differences
between satellites would be attributed to differences in overpass time, spatial resolution,
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and to a lesser degree, scan angle and spectral differences. An analysis of the co-location of
detections is shown in Figure 8. Again, the aggregate of lead detections by satellite and
detection method from 1 January 2020, 1 February 2020, 1 March 2020, and 1 April 2020,
are grouped based on if the lead detection corresponds with another lead detection and/or
with a lead in the validation mask. The majority of the U-Net detections are co-located
with a valid lead (green and blue). In contrast, a larger proportion of the leads in the
legacy product are not co-located with another product detection (black). Among the
detections that are not co-located with another product detection, we would suspect that
leads detected by multiple products but not the validation mask (blue) are most likely
an artifact of an imperfect validation mask (omissions in the validation mask), which is
consistent with a visual inspection of the masks. In contrast, the false positives without a
co-located lead detection (black) are more likely a mixture of false detections and omissions
from the validation mask. The significance is that the false detections that are in only
one product (red) make up a much smaller proportion of the U-Net lead detections than
the legacy lead detections. Moreover, visual inspection of the result masks is consistent
with this interpretation, where many of the “false” leads detected by U-Net appear to be
omission errors in the validation masks, while cloud edge artifacts appear to be the likely
cause of the false detections visually apparent in the legacy product. Overall, the U-Net
technique is a significant improvement over the legacy technique with more true positives,
false positives that tend to look like true leads (likely validation mask omissions), and
fewer false negatives.
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Figure 8. The aggregate co-location of true positive and false positive lead detection by satellite
and detection method from 1 January 2020, 1 February 2020, 1 March 2020, and 1 April 2020. True
positives are shown where a lead detection corresponds with (green) and without (yellow) co-location
of a lead detection from another product. False positives are also shown where a lead detection
corresponds with (blue) and without (black) co-location of a lead detection.

Using a fairly limited dataset with only four days of hand analyzed validation masks,
three of the four day validation sets were used to train the model; the remaining day
was withheld for testing and validation. The detection performance from the three days
within the training dataset are indistinguishable from the fourth day that was withheld
from the training dataset. To further ensure results are not overfit to the truth masks, a
test case, spanning January through April of 2020 and composite results are illustrated in
comparison with the legacy product in Figure 9. Beyond the four-day case study, validation
data are limited, so it is not possible to perform the same rigorous detection skill analysis as
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presented for the cases where hand-analyzed validation masks exist. However, results from
the winter of 2020 confirm that the U-Net does provide more consistency between MODIS
and VIIRS than in the legacy product. Given the spatial patterns of the aggregate results,
we infer that the U-Net appears to have many more true positives (detection features that
look like leads) and fewer false positives (fewer small features that look like cloud edge
artifacts) than the legacy product. A more rigorous study of lead detection over a long time
series will be the focus of upcoming work.
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Figure 9. The aggregate of lead detections from 1 January 2020 through 30 April 2020. The U-Net
detects more leads, shows better agreement across satellites, and appears to perform well for cases
beyond the training dataset.

4. Discussion

The premise is that the more often a potential lead occurs during the course of a day,
the more likely it is that the potential lead is a true lead, whereas fewer repeat observations
tend to be related to false positives, for example, short lived features such as a cloud edge.
Figure 10 illustrates detection skill inferred by the number of repeat observations of a
potential lead. The majority of leads are observed in more than four overpasses, and in the
right, non-leads tend to have a lead detection score above the detection threshold in less
than three overpasses.

We anticipate that expanding the validation set and retraining the model in future
work will likely continue to improve detection metrics. Similarly, future work could
retrain the U-Net based on validation datasets from higher resolution instruments such
as Synthetic Aperture Radar [29] or Sentinel-2 [30], compared against other products,
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and/or applied to other historical, current, or future satellite imagery while also exploring
other visible, thermal, and microwave bands. As an example, a comparison has been
performed of the satellite altimeter based ICESat-2 sea ice leads product [31] against the
U-Net and legacy thermal IR-based lead products. Given the very narrow spatial coverage
(approximately 10-m beam width) and 91 day coverage cycle from ICESat-2, it would be
difficult to derive validation imagery that could be used to train IR-based lead detections.
We would expect to see significant differences in the amount of leads that can be detected
on different spatial scales, for moderate resolution IR imagers, we would not expect to
detect leads narrower than approximately 250 m [32–34]. However, it is possible to identify
the frequency of an IR-based lead co-located with a detection from the altimeter, and these
results are summarized in Table 4. Again, given the spatial resolution of the ICESat-2
ATLAS laser measurements are two orders of magnitude smaller than the 1-km resolution
of the IR leads product, we would expect a significant proportion of sea ice leads detected
by ICESat-2 will be too small for detection with moderate resolution IR. However, what
can be observed in the comparisons against ICESat-2 is that the U-Net technique detects
more leads than the legacy technique. Moreover, with the U-Net there is significantly better
agreement between MODIS and VIIRS; only a small proportion of U-Net lead detections
are detected by one but not both satellites, whereas the legacy product shows relatively
poor agreement between satellites. Overall, the comparisons with ICESat-2 are consistent
with the findings from the IR-based validation masks. At present the U-Net preforms
well detecting moderate to large-scale leads; further research would be necessary to detect
small scale, sub-resolution leads. For example, sub-resolution leads would be more readily
detected using a 4–11 µm brightness temperature difference.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 10. The number of observations of a potential lead by satellite and detection method com-
pared against the aggregate of validation data from 1 January 2020, 1 February 2020, 1 March 2020, 
and 1 April 2020. Notice the U-Net true detections tend to have a high rate of observations. Similarly, 
for false detections, the U-Net has a low rate of repeat observations (and would therefore fail to meet 
the conditions to be classified as a lead). 

We anticipate that expanding the validation set and retraining the model in future 
work will likely continue to improve detection metrics. Similarly, future work could re-
train the U-Net based on validation datasets from higher resolution instruments such as 
Synthetic Aperture Radar [29] or Sentinel-2 [30], compared against other products, and/or 
applied to other historical, current, or future satellite imagery while also exploring other 
visible, thermal, and microwave bands. As an example, a comparison has been performed 
of the satellite altimeter based ICESat-2 sea ice leads product [31] against the U-Net and 
legacy thermal IR-based lead products. Given the very narrow spatial coverage (approxi-
mately 10-m beam width) and 91 day coverage cycle from ICESat-2, it would be difficult 
to derive validation imagery that could be used to train IR-based lead detections. We 
would expect to see significant differences in the amount of leads that can be detected on 
different spatial scales, for moderate resolution IR imagers, we would not expect to detect 
leads narrower than approximately 250 m [32–34]. However, it is possible to identify the 
frequency of an IR-based lead co-located with a detection from the altimeter, and these 
results are summarized in Table 4. Again, given the spatial resolution of the ICESat-2 AT-
LAS laser measurements are two orders of magnitude smaller than the 1-km resolution of 
the IR leads product, we would expect a significant proportion of sea ice leads detected 
by ICESat-2 will be too small for detection with moderate resolution IR. However, what 
can be observed in the comparisons against ICESat-2 is that the U-Net technique detects 
more leads than the legacy technique. Moreover, with the U-Net there is significantly bet-
ter agreement between MODIS and VIIRS; only a small proportion of U-Net lead detec-
tions are detected by one but not both satellites, whereas the legacy product shows rela-
tively poor agreement between satellites. Overall, the comparisons with ICESat-2 are con-
sistent with the findings from the IR-based validation masks. At present the U-Net pre-
forms well detecting moderate to large-scale leads; further research would be necessary 
to detect small scale, sub-resolution leads. For example, sub-resolution leads would be 
more readily detected using a 4–11 µm brightness temperature difference.  

  

Figure 10. The number of observations of a potential lead by satellite and detection method compared
against the aggregate of validation data from 1 January 2020, 1 February 2020, 1 March 2020, and 1
April 2020. Notice the U-Net true detections tend to have a high rate of observations. Similarly, for
false detections, the U-Net has a low rate of repeat observations (and would therefore fail to meet the
conditions to be classified as a lead).

Table 4. ICESat-2 co-location with moderate resolution lead detection; aggregate results from 1
January 2020, 1 February 2020, 1 March 2020, and 1 April 2020. Results are reported as the percentage
of ICESat-2 leads with a lead detection within 1 km of a MODIS and/or VIIRS lead detection.
Positively identified leads are reported first, with potential leads in parentheses.

U-Net Legacy

MODIS 19% (27%) 8% (17%)

VIIRS 21% (28%) 7% (8%)

MODIS or VIIRS 23% (32%) 13% (21%)

MODIS and VIIRS 17% (23%) 2% (5%)
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Some differences will be expected across satellite platforms due to differences in orbital
patterns (overpass times) where leads may move or change, clouds may obscure the leads,
etc. Further, due to spatial differences in the instruments, we would expect the coarser
resolution MODIS data to have a bias toward detecting wider leads while VIIRS, with finer
resolution, would detect narrower leads that may be too small to have a detectable signal in
MODIS. Comparing the MODIS and VIIRS detection score densities illustrated in Figure 4,
there is a slight bias where the VIIRS score tends to be slightly higher than MODIS, and
this is also reflected in the slightly different detection thresholds.

5. Conclusions

The nature of AI is that the quality of the results are limited by the quality of the
training datasets. In the application presented here — detecting sea ice leads (fractures)
in satellite imagery —developing quality validation may be the limiting factor due to the
laborious and imperfect hand analysis. However, in some ways the qualitative detection
skill may exceed quantitative detection skill; i.e., visual inspection of the results shows
that valid leads are detected in areas that the validation mask flags as lead-free. As work
progresses, adding more cases to the validation set should help minimize omission and
commission errors. Going forward, comparisons against time-matched imagery from
higher resolution imagery or lead masks from other sources could also be a good way
to validate results. However, using the existing validation dataset has shown that the
U-Net architecture can successfully be applied for the detection of sea ice leads from
moderate resolution satellite-based thermal imagery. Results demonstrate a high level of
detection skill, and improvement of the legacy technique, with more true positives, few
false positives, fewer false negatives, and better agreement between satellite instruments.

Ultimately, work will continue toward the application of this U-Net technique to the
entire MODIS and VIIRS time-series. From this archive, in excess of 20 years, a rigorous
analysis of the characteristics of sea ice leads will be studied. By establishing separate
models for MODIS and VIIRS, the intention is to be able to provide a stable leads product
over the entire satellite archive. As MODIS nears end of life, the VIIRS product will be able
to continue to provide leads detection products for years to come. Furthermore, the initial
work has been focused on the detection of leads in the winter season; it may be necessary
to expand the training dataset to include warm season cases (that include warm season
clouds and melt ponds) before the technique could be applied to the summer season.
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Appendix A

The results from the full masks from the case study dates are shown in Figures A1–A4.
True negatives are in blue, true positives are green, false positives are red, and false
negatives are black. Land is shown as brown, and open water, determined by being outside
of the largest continuous region of sea ice [24] is shown as gray.
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Figure A1. The full results from which a subset was shown in Figure 6. VIIRS (left) and MODIS
(right) leads product results from U-Net (top) and Legacy product (bottom) on 1 January 2020. The
color table is detailed in Table 2, blue is true negative, true positive is green true positive, red is false
positive, and black false negative in comparison with the validation mask. Land is shown in brown
and gray depicts open water.
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Figure A2. The full results from which a subset was shown in Figure 6. VIIRS (left) and MODIS 
(right) leads product results from U-Net (top) and Legacy product (bottom) on 1 February 2020. 
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Figure A2. The full results from which a subset was shown in Figure 6. VIIRS (left) and MODIS
(right) leads product results from U-Net (top) and Legacy product (bottom) on 1 February 2020. The
color table is detailed in Table 2, blue is true negative, true positive is green true positive, red is false
positive, and black false negative in comparison with the validation mask. Land is shown in brown
and gray depicts open water.
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Figure A3. The full results from which a subset was shown in Figure 6. VIIRS (left) and MODIS 
(right) leads product results from U-Net (top) and Legacy product (bottom) on 1 March 2020. The 
color table is detailed in Table 2, blue is true negative, true positive is green true positive, red is false 
positive, and black false negative in comparison with the validation mask. Land is shown in brown 
and gray depicts open water. 

Figure A3. The full results from which a subset was shown in Figure 6. VIIRS (left) and MODIS
(right) leads product results from U-Net (top) and Legacy product (bottom) on 1 March 2020. The
color table is detailed in Table 2, blue is true negative, true positive is green true positive, red is false
positive, and black false negative in comparison with the validation mask. Land is shown in brown
and gray depicts open water.
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(right) leads product results from U-Net (top) and Legacy product (bottom) on 1 April 2020. The 
color table is detailed in Table 2, blue is true negative, true positive is green true positive, red is false 
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Figure A4. The full results from which a subset was shown in Figure 6. VIIRS (left) and MODIS
(right) leads product results from U-Net (top) and Legacy product (bottom) on 1 April 2020. The
color table is detailed in Table 2, blue is true negative, true positive is green true positive, red is false
positive, and black false negative in comparison with the validation mask. Land is shown in brown
and gray depicts open water.
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