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The degree of error expected in the measurement of widths of sea ice leads along a single 
transect are examined in a probabilistic sense under assumed orientation and width distributions, 
where both isotropic and anisotropic lead orientations are examined. Methods are developed for 
estimating the distribution of "actual" widths (measured perpendicular to the local lead 
orientation) knowing the "apparent" width distribution (measured along the transect), and vice 
versa. The distribution of errors, defined as the difference between the actual and apparent lead 
width, can be estimated from the two width distributions, and all moments of this distribution can 
be determined. The problem is •ustrated with Landsat imagery and the procedure is applied to 
a submarine sonar trarmect. Results are determined for a range of geometries, and indicate the 
importance of orientation information ff data sampled along a transect are to be used for the 
description of lead geometries. While the application here is to sea ice leads, the methodology can 
be applied to measurements of any linear feature. 

1. INTRODUCTION error for much of the archived sonar data, an important 
Polar sea ice is an important factor in the complex question concerns whether or not the data can be used for 

interaction of ocean and atmosphere. Reduction in the lead geometry statistics, and if so, what is the magnitude 
extent and thickness of sea ice due to global warming, and of the maximum error. In this paper a probabilistic 
the consequent increase in the number of cracks in the ice determination of this error is described, providing a 
(hereafter "leads"), is expected to further increase global starting point for the application of stochastic geometry 
temperatures. This positive feedback is a result of theorems in the analysis of lead geometries. Errors in 
reduced albedo and the increase in heat transfer from the 

ocean to the atmosphere. Model estimates indicate that 
an increase of 4% in the area covered by leads during 
winter could produce a hemisphere-wide warming of 1 
degree Kelvin [Ledley, 1988]. Understanding lead forma- 
tion processes as well as the geographical and temporal 
distribution of lead networks is therefore important to 
studies of global climate. 

Measurements of ice thickness and lead coverage are 
commonly made along transects using upward-looking 
submarine sonar. The footprint of the sonar beam used by 
submarines to observe ice conditions is of sufficiently high 
resolution, often 3 m or les•s as opposed to 25 m or more 
for satellite sensors, to make it a potentially useful 
instrument for gathering lead statistics. In fact, sonar 
data have shown that the largest number of lead widths 
are in the 10-20 m range.' Lead width statistics derived 
from submarine sonar data have been reported in the 
literature [e.g., McLaren, 1989; Wadhams, 1981; Wadhams 
and Horne, 1950], but when lead orientation and width 

statistics derived for other lead and keel features are 

discussed briefly. While the application is to sea ice leads 
and sonar data, the methods also apply to the general 
problem of sampling linear features along a transect. 

2. DEFINITIONS, NOTATION, AND AN 
ILLUSTRATION 

In the following discussions, notation follows that used 
in probability theory, where FZ(Z) denotes the distribution 
function (dr) for the population random variable Z with 
specific instance z (i.e., Fz(z) -- P[Z < z]) and fz(z) is the 
probability density function (pdf). Additionally, E[Z] and 
Var[Z] are the expected value and variance of Z. 

The problem is to relate a distribution of lead widths 
taken along a line perpendicular to the local orientation of 
a lead (the "actual" width) to the lead widths measured 
along a transect (the "apparent" lead width), taking into 
account lead orientations, and lead crossing angles. As 
illustrated in Figure 1, the following continuous random 
variables are defined: X is actual lead width, X' is appar- 

statistics are not available, the error in these analyses ent lead width measured along a transect, O is lead 
cannot be accessed. This error may be relatively small if orientation (0 < O < x), and A is lead intersection angle (0 
leads are narrow or randomly oriented, but may be large < A < x), with specific realizations x, x', O, and •z. Addi- 
in the case of wide leads or leads with a preferred orienta- 
tion. While it may not be possible to determine the actual 
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tionally, let • be the transect orientation (0 < • < •). The 
position and orientation of a lead within the plane are 
uniquely specified by the length of the perpendicular that 
connects the lead to the origin, and the angle that it 
makes with a fixed reference line. The intersection angle 
A is measured between the transect and the lead, anti- 
clockwise, and is the difference between their orientations. 
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Transect 

Lead 

X ! 

Fig. 1. The geometrical relationships between a lead and a 
transect. See text for definition of angles and length variables. 

Finally, define A' = [g/2 - A[ to be the crossing angle 
in Figure 1) measured between the transect and a perpen- 
dicular to the lead orientation (0 < A' < g/2). The relation- 

ship between apparent and actual lead widths is 

X' = X (1) 
cos(A') 

where X < X'. Rearranging terms, a lead crossing angle 
can be determined from the lead widths by 

A' = cos-1 [•-] 
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Fig. 3. Lead width distribution for the scene in Figure 2. Widths 
are measured along a perpendicular to the local orientation of the 
lead, and are grouped in 100 m bins. The mean width is 348 m, 
the standard deviation 201 m, and maximum width 1376 m. 

The potential inaccuracies of measuring lead widths along 
a transect can be illustrated by randomly choosing a 
transect orientation and location on a satellite image. 
Here we provide an example with a Landsat Multispectral 
Scanner (MSS) band 4 (0.5-0.6 pxn) scene of the Beaufort 
Sea, March 1988 (Figure 2). The pixel size is 80 m; image 
size is 80 x 80 kin, a subset of a Lands.at scene. To 
increase the sample size of lead widths measured along 
the transect, multiple transects of the same orientation 
are placed randomly on the image. It is assumed that the 
pattern of leads is similar beyond the image boundaries. 
Processing of the Landsat data for the retrieval of lead 
statistics is as follows. A dynamic threshold procedure is 
applied that estimates the probability density function of 
a mixture population (lead/ice) for small regions within the 
image, and a binary image results. Valid lead fragments 
are identified, where "valid" refers to a linear feature for 
which a meaningful width and orientation can be deter- 
mined. Linearity is determined through correlation/regres- 
sion analysis. Lead widths are measured perpendicular to 
the regression line, every kilometer along the lead length, 
and the slope of the regression line is a measure of the 
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Fig. 2. Landsat MSS band 4 scene of the ice pack north of Alaska Orientation (radians) 
in March 1988. Area covered is approximately (80 lrm) 2. Field-of- Fig. 4. Lead orientations for the scene in Figure 2. The mean 
view is 80 m. orientation is 0.67 r (38.4 ø) with standard deviation 0.87 r (49.8ø). 



KEY AND PECKHAM: ERRORS IN WIDTH DISTRIBUTIONS OF LEADS 18,419 

Lead Widths Along a Transect 
30• 

• 20 
• , 

r• 10 

0f .... ...... 
0 500 1000 1500 2000 2500 3000 

Width (m) 

3. PROBABILITY MODELS 

Theorems of stochastic geometry that are applicable 
here have been developed through the study of fibers as a 
stationary random process in the plane. If we use this 
analogy with lead networks, then ai•er $toyan et al. [1987, 
p. 240] the df of intersection angles is 

FA(½X): •+a sin (O' - 9)dFe(O') 
j• Isin (e' - 9)1 dFe(O') 

(2) 

where FA(a) is the probability of intersection angles 
between 0 and ct, FO(0) is distribution function for lead 
orientations, dFo(O) = fo(O) dO, ½x increases in an anti- 
clockwise sense, and in the integral F©(• + •z) = I + Fo(•Z). 
The pdffo(0) may be an assumed mathematical distribu- 
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Fig. 6. Lead crossing angles for a transect across Figure 2. 
Transect orientation is the same as in Figure 5. The mean 
crossing angle is 1.09 r (62') with standard deviation 0.23 r (13'). 

and 

The corresponding distribution function is 

FA(½X) = j•a fA(V) dv = • (1 - cos ½x) , 0_<•x_<n 
which is a special case of (2) for fe(O) = 1/n. In the 
anisotropic (preferred orientation) case we use (2) for the 
distribution of intersection angles, and the corresponding 
densities are determined numerically. 

Two different intersection angles correspond to each 
crossing angle so that the distribution and density func- 
tions for the crossing angle are 

FA,(C() --- P[A' _< 

: P[I--AI -< 
: P[-a' < (A-_•) < 
: P[(_•-•')< A < (•+•')] 
: FA(•+•z') - FA(_•-a') 

which in the isotropic ease yields FA,(O() = sin or' and 
f•,(a') = cos a'. 

3.1. Width Distributions 

An expression for the joint density function of the 
apparent and actual lead widths can be derived. Suppose 
that the joint pdf of X and A' are known, which will be 
f fx(x)fA,(')if the two variables are indepen- _x•t 
dent. Then if Y and Z are two new random variables that 
are functions of X and A' such that Y = X and Z = X' = 
X/cos A', then the joint pdf of Y and Z can be computed 
using a standard theorem [Ross, 1984, p. 217]: 

• 2O 

;.t. 10 

3O 
Lead Crossinl•' Angles 

to northwest where the top of the image is north). For a 
transect orientation ½=3.0 radians (172 ø, south-southwest 
to north-northeast), the distribution of apparent lead 
widths x' is illustrated in Figure 5, with crossing ang!es ½z' 
shown in Figure 6. The mean actual width is 348 m with 
a standard deviation of 201 m, while the mean apparent 
width is 368 m with a standard deviation of 474 m. 

Additionally, the maximum actual lead width in the image 
is 1376 m, while the maximum width measured along the 
transect is 2818 m. With a transect orientation of 0.13 

radians (7.4 ø) the difference between the actual and 
apparent mean widths is 139 m and the maximum width 
is 2670 m. From this example it is clear that significant 
errors can result from sampling along a transect. The 
following section presents a method to assess this error. 

Fig. 5. Lead widths from a randomly chosen transect across tion or may be based on an observed rose of direction. 
Figure 2. Transect orientation is 3.0 r (172') or approximately If the leads are isotropic then the corresponding 
south-southwest to north-northeast where the top of the image is orientations have a simple uniform probability distribution 
north. The mean width is 368 m, the standard deviation 474 m, in the interval 0 _< 0 < •; i.e., fe(0)=l/• for all 0. In this 
and maximum width 2818 m. case the distribution of intersection angles is independent 

of the transect orientation. The probability of crossing a 
lead that is oriented across the transect (a-4 g/2) is 

lead orientation. Further details of this procedure are greater than for one running more parallel (a -4 0 or •). 
given in Key et al. [1990]. The associated intersection angles have density 

The distribution of these actual lead widths x is shown 

in Figure 3 and orientations 0 in Figure 4. The mean lead fA (a) = •4 sin a , 0_<•_<• 
orientation is 0.67 radians (38 ø, approximately southeast which is not uniform but is symmetrical about a = •/2. 
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fy, z(y ,z ) -= f x •y,(x r•') 

= fxA,[x,cos-X(•)] x [(x,)2_ x2]-• 
= f•x) fA,[cos-•( )] • 

•e first of these expressions is valid whether or not X 
and A' are independent. If, however, fut•e research 
indica•s that large leads are o•en•d •fferently than 
small leads, for example, then the joint density fun•ion 
must be deCmined in another manner (possibly from 
obse•ations). Using (3), the pdf of apparent lead •dths 
can be ob•ined: 

•,(•') = • fxx(•') a• 
- •A,[cos- •(•)] • 

(4) 
x [(•,)2 _ •2]-• I a• 

The df of apparent lead •dths can be obtained by inte- 
•a•ng (4) or by conditioning on the value of X, again 
assuming that X and A' are independent. The lair 
method •elds 

which is based on the df rather than the •f of A'. 
Dete•ining the dist•bution ofa•ual lead widths •ven 

the apparent lead width dist•bution must be approached 
differently. •tting Y = Ycos A', then (1) can • re•tten 
as 

X' = • 

logX' =logX+logY 
X and A' are assum• to be inde•ndent, hence so are 
!ogX and log A', so that log X' is a sum of •o 
independent random va•ables. •is allows us to •• 

or 

Flog • = r•og x * tog z (7) 
where the aste•sk represen• convolution [Ross, 19•, 

numbers that must be evaluated at log x, which becomes 
a sampling problem with discrete data; i.e., a very large 
number of observations sampled at small intervals would 
be necessary for any reasonable degree of success with this 
approach. 

Fortunately, there is another way to approach the 
problem. Referring back to (4) and (5), fx' and F X, can be 
viewed as the result of applying an integral operator to •. 
The functions can be discretized as arrays and the integral 
in (5) approximated as a sum: 

J 

FX, q) = A • FA, q,i ) fx(i), (9) 
i=1 

i, j• [ 1J¾], x=iA, y =jA 

where FA,(i,i) = FA,[COS'l(i/j)], N is the number of discrete 
observations and A is the increment between observations. 

If these functions are expressed as matrices, (9) becomes 

F•r = • F•, f x 

1 F•,IF• fx=x 
whose derivation is given in the appendix. 

3.2. Error Distribution 

In this study the error in measured lead width is 
defined as X'-X (which is always positive), although other 
definitions such as X/X' would also be useful. Equation (3) 
allows us to compute the distribution of the error as 
follows: 

•x'-x(•) =- P[X'-X < a] 

= j•f;• fx, x,(x•')dx'dx, a _> 0 
For the isotropic case 

+a 

All moments of X'-X can be computed from fx'-x' 
4. APPLICATION 

These models are now applied. First, a lead width 
p. 202]. The Laplace transform may be used with either distribution measured from sonar data is used to estimate 
(6) or (7). The Fourier transform may be used with (6) but the actual lead width distribution, for both isotropic and 
not with (7) because the pdfs are absolutely integrahie but anisotropic orientations. Lead orientation and actual 
the dfisnot. Using •0[f] to denote the Fourier transform of width distributions are then assumed known, and 
f, then with (6) expected error in lead width is determined for a variety of 

from which the a•ual lead •dth dist•bution is 

•e de•vation of (8) is •ven in the ap•nd•. 

situations. 

Lead width distributions have been described by power 
laws [Wadhams, 1981; Steffen, 1987] as have floe sizes 
[Rotbrock and Thorndike, 1984]. The negative exponential 
distribution has also been used [Dickins et al., 1986]: 

fx(x) = e-x/X / •. 
with mean lead width • and variance •2. The exponential 

(8) model implies that there are a finite number of small 
leads, and that the field is characterized by a length scale 
•. In fact, the lead width distribution may be scale-free, 

This in which case a power law would be appropriate. There is, 
expression shows that when the appropriate transforms of course, a lower limit imposed by the resolution of the 
exist, then the pdf of X is uniquely determined in terms of measuring instrument, and for this reason as well as for 
the pdfs of X' and A'. However, it is only useful for clarity of illustrating expected values, we use the negative 
computations if the Fourier transforms and inverse exponential model. 
transforms shown can be performed analytically. This is Lead orientations may be random or may have a 
because in practice the inverse transform is an array of preferred orientation. A Gaussian model is used here for 
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TABLE 1. Expected Error in Lead Widths (in Meters) Under a Variety of Assumed Distributions 
and Mean Values 

fx* fx' fe r(x- x') - x') 
1 ? Sonar Uniform --- 65.7 1466.1 

2 k=20m ? Gaussian • 2.36 (135 ø) 3.7 3.1 

3 k=20m ? Gaussian • 0.52 (30 ø) 32.5 165.9 

4 k=40m ? Gaussian • 2.36 (135 ø) 4.8 6.4 

5 k=40m ? Gaussian • 0.52 (30 ø) 36.0 345.3 

6 k=20m ? Uniform --- 43.2 653.1 

7 k=40m ? Uniform --- 64.2 1391.2 

.Question marks refer to the unknown distribution. 
Width distribution model is negative exponential. 

$ Parameters of the Gaussian model are p=W4 r (45 ø) and v=0.3 r (17ø). 

preferred orientations. It is recognized, however, that the the expected value of the error is 65.7 m with a variance 
actual shape of the distribution may be bimodal, where of 1466.1 m 2. For cases 2-7 in Table 1 the actual width 
large leads with one orientation are intersected by smaller density function is assumed known, and the apparent lead 
leads at another. Intersection angles of approximately 28 ø width distribution is estimated. For cases 2 and 3, the 
have been observed elsewhere [Marko and Thomson, 
1977]. This situation is not obvious in Figure 4, although 
the distribution is not strictly Gaussian either. 

Table ! lists the expected error for a variety of condi- 
tions, where error is defined by the difference between the 
actual and measured lead widths. Case 1 considers the 
situation where the apparent lead width distribution is 
known. The apparent lead widths are based on submarine 
sonar data recorded by the USS QUEENFISH in August 
of 1970 in the central Canada Basin [McLaren, 1989]. Ice 
draf• data were measured by an upward-beamed fatho- 
meter with a footprint diameter of approximately 2.7 m 
and a vertical accuracy of ñ10 cm. Sequences of continu- 
ous points with drafts _<30 cm constitute leads, an example 
of which is given in Figure 7. The apparent width distri- 
bution was determined for a 100 km section and is shown 
in Table 2. Given a mean apparent lead width of 60.6 m, 

Ice Draft from Sonar 

1.0 

• 3 

o -- 
0.0 0.5 

Relative Distance (km) 

Fig. 7. Submarine sonar ice draft data for a 2.5 km section 
within the Canada Basin north of Alaska. Leads are defined as 

continuous sequences of points with drafts no greater than 0.3 m 
(dashed line); six leads occur in this section. 

crossing angle distributions are shown in Figure 8, and 
the error distributions in Figure 9. In the preferred 
orientation cases (2-5) the error means and variances are 
clearly dependent upon transect orientation. 

5. CONCLUSIONS 

A methodology has been presented for determining 
width distributions of linear features from measurements 

along a transect through a network of such features. Both 
isotropic and anisotropic orientations of the linear features 
have been considered. In the anisotropic case, the orienta- 
tion distribution of the lines must be known. In both 
cases if the distribution of actual widths and the orienta- 
tions are viewed as independent random variables then 
the actual width distribution can be determined from the 

TABLE 2. Lead Widths (Bin Midpoint) and Number of 
Leads per Bin, Measured by Submarine Sonar 

Relative 

Width N Frequency 

20.00 
40.00 63 0.207 

60.00 18 0.059 

80.00 25 0.082 

100.00 22 0.072 

120.00 12 0,039 
140.00 4 0.013 
160.00 4 0.013 

180.00 5 0.016 
200.00 5 0.016 

220.00 3 0.010 
240.00 2 0.007 

260.00 0 0.000 
280.00 0 0.000 

300.00 3 0.010 

320.00 0 0.000 

340.00 1 0.003 

360.00 3 0.010 



18,422 KEY AND PECKHAM: ERRORS IN WIDTH DISTRIBUTIONS OF LgaoS 
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Fig. 8. The distribution functions of crossing angles F A, for cases 
2 (solid) and 3 (dashed) in Table l. 

apparent widths and vice versa. Furthermore, if the 
actual widths and the orientations vary jointly then the 

concurrent overhead imagery from aircraft or satellite is 
also a potentially valuable source of information. How- 
ever, lead width distributions derived from satellite data 
may not be accurate since very small leads are not 
resolved. This is particularly true for medium resolution 
data such as that from the Defense Meteorological Satel- 
lite Program (DMSP) or the Advanced Very High Resolu- 
tion Radiometer (AVHRR) on-board the TIROS-N satel- 
lites. One solution might be to retrieve the orientation 
information from satellite data where small lead widths 

cannot be resolved, and the width information from 
submarine sonar transects. 

Other applications of this procedure are possible. For 
example, laser profilometer transecte are analogous to 
sonar transects, and the methods outlined above could be 
used for lead and ridge spacing distributions and their 
associated errors. As in the illustration with Landsat 

data, transect sampling of satellite imagery is a natural 
application. Similarly, heat flux through leads is in part 
a function of fetch, and fetch is a function of the actual 
lead width and the crossing angle of the wind. If the wind 
direction is constant as it travels across the network of 

leads, then the distribution of fetches can be determined 
from the distribution of actual lead widths. Finally, it 
may be possible to estimate open water fraction over a 

apparent width can be determined from the joint distribu- large area from the apparent lead width and spacing 
tion. The application presented was to measurements of distributions measured along a transect. This research is 
sea ice leads made by submarine sonar. The width currently in progress, with results to be presented subse- 
distributions measured from sonar illustrated that the 

general shape is similar to those derived from satellite 
imagery, but that the errors in widths can be significant. 
Unfortunately, it is not possible to determine the actual 
error in lead widths derived from much of the archived 

sonar data. However, if lead "climatologies" can be 
compiled for various locations and seasons, or if significant 
relationships between lead orientation and geostrophic 
winds can be developed, then at least we can determine 
the probable error. 

Of course, the potential error is not an issue if adequate 
two-dimensional data are available. For example, side- 
scan sonar may permit a more accurate retrieval of lead 
and keel statistics [Wadhams, 1988]. Sonar data with 

Error Distmbutions 
Transect Omenrations: 2.36 (solid), 0.52 (dashed) 
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Fig. g. The distribution functions of the lead width errors, FX,.X , 
for cases 2 (solid) and 3 (dashed) in Table 1. 

quently. 

APPENDIX 

Derivation off X From t•og X 
Equation (6) gives an expression for/•og X' However, 

we are interested in fx rather than/%g X, so we use the 
identity 

fiog y(log y) = y fy(y) (A1) 
which is proven by 

Flog y(log y) - P[log Y < log y] 
- P[e log Y _< e log y] 
- p[y < y] 

The derivative of both sides with respect to y produces 
(A1). 

Using (A1) and (6), an expression for the actual lead 
width distribution can be obtained: 

tiog - 

ß [fiog v] 
Matrix Formulation off X 

Expressing equation (5) in terms of matrices provides a 
way to solve fbr fx' The functions can be discretized as 
arrays and the integral approximated as a sum as shown 
in (9), which is repeated here: 

J 

rmq) : a rAa',i)fx(i), 

i,j• [ lJV], x=i& y=ja 
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where FA,•,i) = FA,[Cos'l(i/j)], N is the number of discrete REFERENCES 
observations and A is the increment between observations. Dickins, D., A. Dickinson, and B. Humphrey, Pack ice in 
Suppose we now form an N x N matrix, M, as follows: 

M•',O - • F.4,U,O, •_•_•j•_N 
M•',i) = 0, l<j<i<_.N 

where the first expression refers to elements on or below 
the diagonal. It follows that 

or 

j N 
A • FA, q,i) fx(i) = • MO',i) fx(i) 

i--1 i=1 

(A3) 

N 

FX,(j): • M(j,i) fx(i) (A4) 
i=1 

This is equivalent to the matrix equation 

F2r - M f• (AS) 
From this it can be seen that the problem is solved if M is 
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row and last column from M. This gives 

fl 

f2 _ M• ! Fs (AS) 
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