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I n  many remote sensing studies of  geophysical fields 
such as clouds, land cover, or sea ice characteristics, the 
fractional area coverage of the field in an image is esti- 
mated as the proportion of pixels that have the character- 
istic of interest (i.e., are part of  the field) as determined 
by some thresholding operation. The effect of  sensor field- 
of-view on this estimate is examined by modeling the 
unknown distribution of  subpixel area fraction with the 
beta distribution, whose two parameters depend upon the 
true fractional area coverage, the pixel size, and the 
spatial structure of the geophysical field. Since it is often 
not possible to relate digital number, reflectance, or tem- 
perature to subpixel area fraction, the statistical models 
described are used to determine the effect of pixel size 
and thresholding operations on the estimate of  area frac- 
tion for hypothetical geophysical fields. Examples are given 
for simulated cumuliform clouds and linear openings in 
sea ice, whose spatial structures are described by an 
exponential autocovariance function. It is shown that the 
rate and direction of  change in total area fraction with 
changing pixel size depends on the true area fraction, the 
spatial structure, and the thresholding operation used. 

INTRODUCTION 

An analytical description of the relationship between 
the satellite-derived fractional area coverage of a geo- 
physical field and sensor resolution is needed in order 
to assess the potential error in many satellite-derived 
products and to understand in a more quantitative man- 

*Cooperative Institute for Research in Environmental Sciences, 
Division of Cryospheric and Polar Processes, University of Colorado, 
Boulder 

Address correspondence to Jeffrey R. Key, CIRES, Univ. of 
Colorado, Campus Box 449, Boulder, CO 80309-0449. 

Received 30 September 1992; revised 8 January 1994. 

0034-4257 / 94 / $ 7. oo 
@Elsevier Science Inc., 1994 
655 Avenue of the Americas, New York, NY 10010 

ner the benefits of different sensor systems. While there 
have been studies of the effect of sensor resolution on 
parameter retrieval, the approaches have been empirical 
and specific to a single geophysical variable. In the 
analysis of land cover classes, for example, the variance 
within satellite images has been examined as a function 
of measurement scale for the purpose of determining 
the optimal resolution for change monitoring (e.g., 
Woodcock and Strahler, 1987; Townshend and Justice, 
1988). In studies of cloud fraction, real and synthetic 
data containing cloud fields were degraded in resolution, 
and the fractional coverage was observed as a function 
of scale (e.g., Wielicki and Parker, 1992; Wielicki and 
Welch, 1986; Shenk and Salomonson, 1972). 

Even though these studies are useful, no concise 
statement of the relationship between fractional cover- 
age and sensor resolution has been given, so that the 
results are difficult to generalize to other geophysical 
fields. A complete analytical description of the problem 
is difficult at best, involving geometrical (viewing geom- 
etry), spectral (band location and width), radiometric 
(signal-to-noise ratio, quantization levels), and spatial 
(sensor resolution or pixel size) properties. In this arti- 
cle, a first attempt at an analytical approach to the 
problem is described. We are concerned only with the 
fraction of the image area covered by some geophysical 
parameter, for example, cloud or open water fraction. 
We take an approach similar to that of Shenk and 
Salomonson (1972), where cloud fields were simulated 
and the relationship between pixel size, cloud size, 
estimated area fraction, and true area fraction were 
expressed for different thresholding operations. That 
work is extended, however, by generalizing the problem 
to any geophysical variable whose spatial structure can 
be described by its autocovariance function. Addition- 
ally, a specific probability density function is used as a 
model of the subpixel area fraction so that the results 
do not depend upon a given simulation. In this manner 
the results are applicable to a wide variety of geophysical 
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fields including clouds, sea ice fractures ("leads"), and 
land cover classes. In the next section the anaytical 
approach is described. The models are then applied to 
simulated fields of clouds and sea ice leads in a satellite 
image context. 

ANALYTICAL APPROACH 

Our goal is to determine the proportion of pixels in an 
image that have the characteristic of interest; for exam- 
ple, the fraction that are cloudy or that are sea ice leads, 
etc., given some thresholding operation. This depends 
on the distribution of the subpixel area fraction, which is 
specified by its shape, mean, and variance. The variance 
depends on the pixel size and the spatial structure of the 
geophysical parameter, described by its autocovariance 
function. The formalization that follows can be applied 
to virtually any geophysical parameter whose spatial 
distribution can be described in this manner. 

Indicator Function 
Let q(x) be a measurable property (e.g., temperature or 
reflectance) at a point whose position is represented by 
the location vector x, and define ( to be any condition 
on q. For example, ( might be the condition q(x) < T~ - g, 
where Ts is the surface temperature and g is some 
threshold amount. The indicator function I(x) in a square 
region R is equal to 1 if q(x) satisfies ( and 0 otherwise. 
The fractional coverage for which q satifies ( is given 
by 

I, I(x) dx, (1) p=A~ 2 

where A~ is the side length of R and is a normalizing 
factor. For the rest of the discussion R is a satellite 
image. The probability density function (pdf) of I is 
f(1) = P and f(O) = 1 - P. 

Now let q~(y) be a measurable property of a pixel 
Z within R centered at location y (again, a vector). As 
measured by the sensor, q~ would be an average over a 
pixel: 

q~(y)=A;2 f q(x)dx, 
z(y) 

where A~ is the side length of the pixel. An argument 
could be made for using the sensor point spread (trans- 
fer) function, but for simplicity a rectangular spatial 
response is assumed. The fractional area of R for which 
qz satisfies ( is  an estimate of the true fractional coverage 
and is 

iv' = N-~ Z Ix(y), (2) 
R 

where N is the number of pixels in R and Iz is the 
indicator function for the pixel based on q~, defined in 
the same way as is I (for a point) based on q. Our goal 
is to relate P' to P over a range of Az. 

To determine P' analytically, the probability density 
of I~ must be known. It is not trivial, and depends on 
P, (, pixel size, and the way in which objects satisfying 

are distributed in space. Since I~ is a function of q~, 
which in turn depends on the fractional coverage within 
a pixel p~, then (under certain conditions) I~ can be 
expressed in terms of pz. For example, consider a cloud 
pattern where the cloud top temperature Tc is every- 
where the same and is less than the surface temperature 
Z~. Let ( be a thresholding operation such that 

l0 ifq~ < L - d i ,  
Iz = otherwise, 

where g is some threshold amount. This is equivalent 
to 

0 i f  pz t> p, I~ = (3) 
otherwise. 

The expression pz >/p states that the fractional coverage 
within the pixel is greater than some quantity p, which 
in this example has a value such that 

(1 -p)Ts+pT~< T~-g. 

In reality there may be a distribution of Tc, although 
we do not address this issue here. So, based on Eq. (3), 
the probability density of I~ is 

3~(1) = Prob(e~ >I p), 

fi~(0) = Prob(Pz < p) = 1 -fiz(1), 

where Pz represents the random variable subpixel frac- 
tional coverage (with specific realization p~), and 
Prob(P~/> p) represents the probability that the frac- 
tional coverage within the pixel is greater than some 
quantity p. Now, how is Prob(P~/> p) determined? 

Distribution of Subpixel Area Coverage 
For a single pixel the fractional coverage of the geophysi- 
cal parameter is 

pz(Y) = A ;  2 SZ(ylI(x)dx, 

which can be used as an estimate of the true area 
fraction in the image P. After Stoyan et al. (1989, p. 
184), the expected value and variance of Pz are 

g = E(Pz) = P, (4) 

(r e = Var(Pz) = E[P~ - E(Pz)] z 

= [ a ; 2 1  t(x) d x -  
,) Z 

x [A; 2 I I(x3 dx ' -  P] 
,) Z 

where k, is the autoeovarianee function for the indicator 
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function. The effect of pixel size on the autocovariance 
function has been studied by Jupp et al. (1988; 1989), 
although the autocovariance function in (5) does not 
depend on pixel size; that is, it refers to the true underly- 
ing (point) autocovariance. The expression (5) for the 
variance of the subpixel area fraction can be expanded 
as 

i? a 2 = A z  4 k,(r)rlA2[2n - 8~(r)]  

- 8Ar~/2 cos[n/4 + ~(r)] + 2r e cos[e~(r)] } dr, (6) 

where 

I O, O <~ r <~ A 

~(r)= 1/4cos- ' [ l+[2 / ( , /2 -1)] (1-r la )] ,  a<r~<a~/2, 

as given in Rothrock and Thorndike (1984), with a 
correction made here. This applies to a square pixel 
and an isotropic covariance function. 

If a specific model distribution for Pz is assumed, 
with expected value and variance as defined above, then 
the density of the pixel indicator function is also known. 
Here we use the Beta distribution, a two-parameter 
density function defined over the closed interval 
0 ~ p ~< 1 that is often used as a model for proportions: 

f a ( P )  = (py_l(l_p)a_,V(y+#) ~ , , # > 0 , 0 < p <  1, 

Fry)r@' elsewhere. 

The two parameters can be determined by maximum 
likelihood estimation based on the mean and variance 
of the subpixel fractional coverage in Eqs. (4) and (5) 
(Falls, 1974): 

= ~ -  [/.t(1 -/~) - P 0"2], 

y =  
1-/1 

The shape of the distribution is related to the size 
of the pixel relative to the spatial structure (e.g., wave- 
length) of the geophysical parameter. In the limiting 
case with very large pixels relative to the wavelength 
of cloud elements, for example, most pixels would have 
a similar subpixel cloud fraction and the variance would 
be very small. The distribution would therefore have a 
single peak. On the other hand, if the pixel size is 
very small, then the likelihood of pixels being either 
completely overcast or completely clear increases, the 
variance of the subpixel area fraction increases, and two 
peaks are expected. This is illustrated in Figure 1 where 
the beta distribution is shown for a mean area fraction 
of 0.2 and variances of 0.1, 0.05, and 0.01. 

The beta distribution has often been used to de- 
scribe cloud amount frequency distributions (e.g., Falls, 
1974; Henderson-Sellers and MeGuffie, 1992; Jones, 

Beta Distributions of Subpixel Area Coverage 

Mean=0.2 

5~ i  Vor=O.01, S=0.25 
~': - .  Vor=O.05, S=0.56 

~, ~1~ - - Vor=0.10, S=0.79 

~ ~ 3  iL',. ' 

0.0 0.2 0.4 0.6 0.8 1.0 
Subpixel Area Fraction 

Figure 1. Three realizations of the Beta probability density 
function for a mean subpixel fractional coverage of 0.2 and 
three different variances. The shape parameter S is also 
given. 

1992). More recently a similar distribution, the Burger 
distribution, has also been used (e.g., Henderson-Sellers 
and McGuffie, 1992). The Burger distribution is de- 
scribed by the mean cloud amount and a correlation 
distance defined as the separation distance between 
pixels at which the autocorrelation drops below 0.99. 
Correlation distance was also used by Gringorten (1979), 
who developed models through simulations describing 
the probability of a meteorological condition occupying 
some fraction of a line or area. 

Jones (1992) presents a shape parameter that can 
be used to describe the beta distribution. It is defined 
as 

S = 0-/Lu(1 -H)] ~/2. 

S > 0.6 implies a U-shaped distribution, S= 0.6 implies 
a fiat distribution, and S < 0.6 implies a distribution with 
a central peak. Values of the shape parameter are also 
shown in Figure 1. In the examples that follow, and in 
most satellite remote sensing applications where pixel 
sizes are 1 km or less, S > 0.6. 

Changes in Total Area Fraction 
Now we return to the estimate of the total area fraction 
in an image, P', which is the proportion of pixels in the 
image for which the indicator function takes on a value 
of 1, as defined in Eq. (2). Given the distribution of 
subpixel area fraction described here by the beta pdf, 
P' is simply Prob(Pz t> p) or the probability that the 
subpixel area fraction is greater than some threshold 
value p. This is the area under the curve to the right of 
any given value along the horizontal axis in Figure 1. 

Figure 2 shows the estimated total area fraction for 
four true are a fractions as a function of the subpixel area 
fraction variance (along the abscissa) and the threshold 
value. The variance and the true area fraction together 
define the distribution of subpixel area fraction so that 
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Figure 2. Estimated total area fraction as a function of the 
subpixel area fraction variance and true area fraction. Re- 
suits for three subpixel area fraction thresholds are shown. 

a wide range of spatial structures and pixel sizes is 
represented in the three plots, independent of any par- 
ticular geophysical field. For a given autocovariance 
function, pixel size decreases toward the right in the 

plots. Note that there is an upper  limit on the variance, 
defined by the point at which the two parameters  of 
the beta distribution are equal to or less than 0. This 
point is /~-/22. In theory, decreasing the pixel size 
(increasing the variance) beyond this point has no effect 
on the estimate of the total area fraction. 

A P P L I C A T I O N  

In this section the above models are applied to simulated 
satellite data. Since these models require some a p r io r i  

knowledge of the field's spatial structure, they cannot 
be used to assess the error in the total area fraction 
estimate from a single image alone. Instead, this section 
illustrates how the error can be assessed for typical 
realizations of two very different geophysical variables: 
clouds and sea ice leads. 

A cloud field is simulated as a distribution of disks 
whose center locations follow a binomial point process 
and whose diameters are approximately normally dis- 
tr ibuted (in a true Gaussian distribution, negative diame- 
ters would be possible)• One realization is shown in 
Figure 3, where the mean diameter is 2000 m. Sea ice 
leads are modeled as a Poisson line process. The mean 
spacing between the lines (leads) is 3000 m, and their 
orientations are random. The lines are assigned thick- 
nesses (widths) following the negative exponential den- 
sity function: 

fw(w) = l e  IE/~,  

A 

Figure 3. A simulated cloud field, where cloud centers 
follow a binomial point process and cloud diameters are 
Gaussian-distributed. 
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where w is lead width and ). is the mean width. For 
the simulations 2 = 200 m. One realization is shown in 
Figure 4. 

To examine the effects of pixel size on the estimated 
fractional area coverage, these images were degraded 
by simple averaging of 2 x 2 pixel cells. Four degrada- 
tions were performed. Initial pixel size is 50 m; pixel 
size doubles with each degradation so that the largest 
pixel examination is 800 m. 

Exponential covariance is a reasonable model for 
many geophysical parameters and is used here: 

k,(r) = P(1 - P)e-ar, r,a >i O, (7) 

where a describes the dependence of the covariance 
on the separation distance r. Implicit in this expression 
is that q(x) is isotropic. Using Eq. (7) and Eq. (6) gives 

a2 = P(l - P)Az4 f i4~e-arr{ A2[2rc- 8~(r)] 

- 8Ar4~ cos[n/4 + ~(r)] + 2r 2 cos[2~(r)] } dr. (8) 

Note that the effects of area coverage and autocovari- 
ance (e.g., the size of objects and pixel size) separate 
out: 

a2/e(1 - P) =f(A), 

which is essentially Jones's (1992) shape parameter S. 
This is not strictly true for the correlation functions of 
the cloud and lead models employed here, but is still 
useful for the purposes of this article. The parameter 

Figure 4. A Poisson line process, used to stimulate linear 
openings in sea ice. 

a in (7) and (8) can be determined from observed 
autocovariances by rewriting (7) in linear form, 

ln[k,(r)] = In[P(1 - P)] - ar, (9) 

and solving by least squares regression. For the applica- 
tions below, the parameter a is determined for three 
evenly spaced, parallel transects in the imagery and 
then averaged. 

Table 1 illustrates the application of the beta distri- 
bution and its estimated moments to the synthetic data 
in Figures 3 and 4. Listed are the pixel size relative to 
the smallest pixel (where the smallest pixel is 1), a 
determined from the image, the "true" area fraction P 
determined from the highest resolution image in which 
each pixel is either empty or completely full, the ob- 
served variance of the subpixel fractional coverage Pz, 
and the variance of Pz estimated by solving Eq. (8) 
numerically. The difference in the a values for the two 
different fields reflects their spatial structures where 
the (auto)covariance of the synthetic leads falls off more 
rapidly than that of the clouds. The true area fraction 
and the observed and estimated variances in Table 1 
for the cloud case were used to generate beta pdfs for 
comparison with the observed distribution of subpixel 
area fraction. The results are shown in Figure 5 as the 
complement of the cumulative probability distribution 
function. End effects are due to binning procedures. 
Shown this way, it is straightforward to determine the 
total fractional area coverage estimate P' of the image 
for any threshold. For example, in the top plot of Figure 
5, any threshold greater than 0.1 (in theory, any value 
greater than 0) would yield the same cloud area fraction: 
0.25. With a larger pixel size, however, this is not the 
case (Figure 5, bottom). A threshold of 0.2 produces a 
total area fraction of 0.33 while a threshold of 0.6 yields 
a total fraction of about 0.2. 

DISCUSSION 

Except in the case of a uniform target and background, 
as with a single cloud deck over open water, it will 
generally not be possible to determine the subpixel area 
fraction and hence to apply the models presented here. 

Table 1. Relative Pixel Size, the Covariance Parameter, 
True Total Area Fraction, and the Observed and 
Estimated Variances of the Subpixel Area Fraction 

Observed Estimated 
Image A a P Var(P:) Var(P~) ° 

Clouds 1 0.05 0.246 0.185 0,178 
16 0.133 0.124 

Leads 1 0.15 0.033 0.032 0.029 
16 0.010 0.011 

" Estimated using Eq. (8). 
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Figure 5. Complement of the cummulative probability func- 
tion of subpixel area fraction for the cloud field in Figure 3, 
using two different relative pixel sizes. Shown are the ob- 
served and estimated distributions, where the estimated 
functions are based on the true total area fraction and the 
observed and estimated variances in subpixel area fraction 
(Table 1). 

the distribution of pz is bimodal so that a range of 
thresholds would yield the same, correct P', that is, 
P' = P. At a large pixel size there may be only one correct 
threshold, but it is within the range found for the small 
pixel case. When dealing with DNs (temperatures, re- 
flectances, etc.), however, this may not be the case. 
Further research is needed concerning the effect of 
"regularization," or the averaging over the point spread 
function of sensors. The work of Jupp et al. (1988; 1989) 
is important in this regard. 

Given the pixel unmixing problem when the spec- 
tral structure of the field is complex, one way (perhaps 
the only way at present) to relate the DN threshold to 
the subpixel area fraction threshold is to choose a DN 
threshold very close to the background value. This is 
analogous to choosing a small subpixel area fraction 
threshold, as in the top plot of Figure 2. If the pixel 
size is small enough relative to the spatial structure of 
the field, then P' will be a good estimate of P. If the 
pixel is not small, then all that can be said is that P' >t P 
(see Figure 2, top). How small is small? 

To more easily address this and similar questions, 
Figure 6 was constructed as an aid in the interpretation 
of (8). The figure shows the normalized variance as a 
function of relative pixel size A and the slope of the 

Figure 6. The variance of the distribution of subpixel area 
fraction computed from Eq. (8), normalized by P(1 -P), as a 
function of relative pixel size and the slope of the exponen- 
tial covariance function a. To determine the actual variance, 
the contour value must be multiplied by P(1 -P). 
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exponential covariance function a. The normalization 
was done by computing Eq. (8) without the P(1-P)  
term so as to remove the dependence on P. Therefore, 
to use this figure, the reported values must be multiplied 
by this term to retrieve the actual variance of the sub- 
pixel area fraction distribution. The two important rela- 
tionships in Eq. (8) that are illustrated in Figure 6 are 
that an increase in the pixel size or an increase in the 
rate at which the covariance drops off with distance 
both result in a decreasing variance. Not shown in 
Figure 6 but implicit in (8) is the relationship between 
P and the variance: the variance of Pz is maximum when 
P = 0.5 for a constant A and a. 

Now, if we interpret the previous condition that a 
DN threshold close in value to that of the background 
translates into a subpixel area fraction threshold of ap- 
proximately 0.2 (for the purpose of illustration), then 
Figures 2 and 6 can be used together to answer "what 
if' questions. For example, suppose that the geophysical 
field had an exponential autocovariance with a = 0.4 and 
the true area fraction is 0.2. What would be the esti- 
mated total area fraction P' with a relative pixel size of 
2? The variance based on Figure 6 would then be 
approximately 0.11 and from Figure 2 the estimated 
area fraction would be about 0.28 with a threshold of 0.2, 
0.19 with a threshold of 0.5, and 0.12 with a threshold of 
0.8. With a relative pixel size of 6, the variance is 0.056 
and the area fraction estimates are 0.36, 0.13, and 0.02, 
respectively. 

It should be noted that in theory a beta distribution 
that is consistent with the observed autocovariance func- 
tion can be chosen. The regression method of estimating 
the rate of decay of the autocovariance described by 
Eq. (9) also provides an estimate of P. From these two 
parameters the variance in Eq. (8) is then determined, 
thereby defining the beta distribution. However, the 
autocovariance is affected by pixel size, as described in 
Jupp et al. (1988; 1989). Therefore, the autocovariance 
determined by Eq. (9) must be translated into the "true" 
(point) autocovariance before the correct beta distribu- 
tion can be determined. 

SUMMARY AND CONCLUSIONS 

In most analyses of geophysical fields in satellite imagery 
each pixel is eventually labeled as either containing or 
not containing the variable of interest. This labeling is 
accomplished through a thresholding operation, where 
pixels whose DN is different from the background DN 
by more than some threshold amount are labeled as 
being part of the geophysical field. Estimates of the area 
coverage of the field are obtained as the proportion of 
these pixels in the image. The actual subpixel area 
fraction (Pz) of the geophysical field varies considerably, 
however, as a function of the true area fraction, the 
spatial structure, and the pixel size. It has been shown 

here that the beta distribution is an adequate model of 
the distribution of Pz. In the simple case of a uniform 
target (e.g., a cloud deck) and a uniform background, 
the DN thresholding operation can be described in 
terms of a subpixel area fraction threshold. The estimate 
of the total area fraction within an image is then the 
probability of obtaining a subpixel amount greater than 
the threshold, which can be easily determined from the 
beta distribution. 

The statistical models presented allow us to answer 
many questions in a hypothetical sense about the effect 
of spatial structure, pixel size, and thresholding opera- 
tions on the estimated fractional area coverage in an 
image. It should be clear from the results presented here 
that the thresholding approach can result in substantial 
errors. Of course, if the subpixel area fraction were 
known, then there would be no need for employing the 
threshold procedure. Unfortunately, geophysical fields 
are often complex so that the relationship between a 
DN threshold and a subpixel area fraction threshold is 
not clear. Additional research is needed in this area to 
define the effect of pixel size on the distribution of DNs 
(e.g., temperature, reflectance) in an image. 

There are other approaches to the scaling problem 
that deserve mention. The basic idea of labeling pixels 
to estimate area fraction can be described by the set 
operations of erosion and dilation used in mathematical 
morphology (Serra, 1982). For example, pixels can be 
labelled as "hitting" an object if any part of the object 
is within the pixel and "not hitting" otherwise. This is 
analogous to thresholding near the background value. 
As the pixel size approaches, the image size the esti- 
mated area fraction approaches unity. On the other 
hand, if a "hit" is defined to occur only if the pixel is 
completely inside an object, the estimated area fraction 
approaches zero as the pixel size increases. 

Fractals have also been used to describe the rela- 
tionship between area coverage and measurement scale. 
For example, in Cahalan and Joseph (1989) the relation- 
ship between cloud area and perimeter was described 
by a fractal scaling law for clouds. The scaling properties 
of stream channels have been described in terms of 
"fat" fractals (Karlinger and Troutman, 1992). Rainfall 
amounts have been studied as cascade processes (Gupta 
and Waymire, 1993). Unfortunately, these are all spe- 
cific to a particular geophysical variable, and are difficult 
to generalize to remote sensing studies. 
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