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ABSTRACT: A forward-feed back-propagation neural network is used to classify merged AVHRR and SMMR summer
Arctic data. Four surface and eight cloud classes are identified. Partial memberships of each pixel to each class are
examined for spectral ambiguities. Classification results are compared to manual interpretations and to those determined
by a supervised maximum likelihood procedure. Results indicate that a neural network approach offers advantages in
ease of use, interpretability, and utility for indistinct and time-variant spectral classes.

INTRODUCTION

T HE ARCTIC REGION provides a unique set of problems for
image analysis algorithms. Current procedures for auto­

mated analyses of satellite radiance data have been developed
for low and middle latitudes, but their application to polar re­
gions has been largely unexplored. Those that have been ap­
plied often fail in the polar regions because surface temperatures
are commonly as low or lower than cloud-top temperatures,
and because snow-covered surfaces exhibit albedos similar to
those of clouds. Also, extremely low surface temperatures and
solar illuminations cause satellite radiometers to operate near
one limit of their performance range, and in winter no visible­
wavelength data are available. Because of these problems, a
complex analysis method is necessary (WMO, 1987). Classifi­
cation of Arctic AVHRR data with clustering algorithms has been
performed primarily by Ebert (1987, 1988), Key (1988), and Key
et al. (1989).

In this paper, we investigate the ability of neural networks
to extract four surface and eight cloud classes in the Arctic from
a merged data set consisting of five Advanced Very High Res­
olution Radiometer (AVHRR) and two Scanning Multichannel
Microwave Radiometer (SMMR) channels. Results are compared
to manual interpretations and to output from a supervised clas­
sification with a maximum likelihood class assignment scheme.
Because cloud and sea ice mapping for climatological studies
requires the processing of many images covering large areas
(for example, 30 days worth of AVHRR images for the northern
hemisphere), selection of training sites in a supervised scheme
or the assignment of spectral clusters to physical classes in an
unsupervised approach can involve an unacceptable amount of
time and effort. Because a class such as low cloud over ice
actually includes a range of cloud thicknesses overlying a range
of ice concentrations, considerable spectral variability exists within
the class as well as within individual pixels. Our primary goal
in this work is to investigate the ability of a neural network
classifier to deal with the considerable within-class variability
encountered in our data based on a relatively small training set.
The manual and supervised classifications are used to provide
benchmarks for comparison of the neural network results, rather
than as a test of the merits of these more traditional methods.

Motivated by the apparent limitations of multispectral feature
extraction from imagery and the availability of expert system
development tools, artificial intelligence (AI) techniques have
come into increased use for the analysis of remotely sensed data
(e.g., Nicolin and Gabler, 1987; Matsuyama, 1987; McKeown,
1987; Estes et aI., 1986; Nandhakumar and Aggarwal, 1985;
Campbell and Roelofs, 1984), and have also been employed in
geographic information systems (CIS) applications (e.g., Usery
and Altheide, 1988; Ripple and Ulshoefer, 1987; Robinson and
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Frank, 1987; Smith et aI., 1987; Jackson and Mason, 1986; Smith,
1984). Due to the limited knowledge of the physical processes
in the environment and the inherent noise in many geophysical
data, environmental systems often cannot be accurately rep­
resented through numeric values describing their physical
properties and interactions, but rather are subjected to catego­
rization into broad classes. Most applications of expert systems
have sought to apply qualitative knowledge to decision-making;
expert systems operate primarily on abstract symbolic .struc­
tures. In remote sensing applications where pattern recogni­
tion, spatial and temporal context, and multivariate analysis are
common requirements, coupled numeric/symbolic systems may
be useful. This issue has recently been addressed by Kitzmiller
and Kowalik (1987), Kowalik (1986), and Borchardt (1986). Tra­
ditional techniques may not be adequate to identify and make
use of relationships across such a broad range of numeric and
non-numeric variables.

The neural networks, or connectionist, approach was first
introduced as a theoretical method of AI in the 1960s. However,
limitations in simple systems were recognized by Minsky and
Papert (1969) and the concept gave way to the symbol system
approach for the next two decades. The idea has recently been
revived due to advances in hardware technology allowing the
simulation of neural networks and the development of nonlin­
ear multi-layered architectures (Rumelhart et aI., 1986). The
technique has considerable potential for remote sensing, as sug­
gested by applications to automated pattern recognition (e.g.,
Ritter et aI., 1988). The relationship between symbolic AI and
neural networks is addressed by Chandrasekaran et al. (1988).

DATA

The data sets used here provide a broad range of spectral
information necessary to map clouds and surfaces in polar re­
gions. These data are typical of the types of imagery used for
mapping of global cloud, sea surface temperature, and other
climatological variables. The Advanced Very High Resolution
Radiometer (AVHRR) on board the NOAA-? polar orbiting satellite
measures radiance in five channels encompassing the visible,
infrared, and thermal portions of the electromagnetic spectrum
(1: 0.58 to 0.68IJ.m, 2: 0.73 to 1.01J.m, 3.55 to 3.93IJ.m, 4: 10.3 to
11.31J.m, 5: 11.5 to 12.5IJ.m) with a nadir resolution of 1.1 km.
Global Area Coverage (CAe) imagery is a reduced-resolution
product created through on-board satellite processing, with each
pixel representing a 3 by 5-km field of view (Schwalb, 1978).
Channels 1 and 2 were converted to approximate spectral al­
bedo; channels 3, 4, and 5 were converted to radiance in mil­
liwatts/m2-steradians-cm), then to brightness temperature
(NOAA, 1984; Lauritsen et aI., 1979). The typically low water
vapor content in the polar atmosphere and the low physical
temperatures reduce most atmospheric effects to a point where
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they may be neglected for the analyses performed here. Ap­
proximate corrections for solar zenith angle in channels 1 and
2 were accomplished through a division of the albedo by the
cosine of the zenith angle.

The Nimbus-7 Scanning Multichannel Microwave Radiometer
(SMMR) is a conically scanning radiometer that senses emitted
microwave radiation in five channels: 6.6, 10.7, 18.0, 21.0, and
37.0 GHz, with two polarizations (horizontal and vertical) per
channel. At these frequencies, passive microwave data are rel­
atively unaffected by clouds and provide useful data year-round
independent of solar illumination. The 18 and 37 GHz vertical
polarization channels are used here primarily for surface para­
meterization, with fields of view of 55 by 41 kIn and 27 by 18
kIn, respectively.

In order to study both clouds and surfaces beneath clouds, it
is worthwhile to combine the AVHRR and SMMR channels into
a single image set. AVHRR and SMMR data were merged in digital
form and mapped to a polar sterographic projection. This pro­
jection yields pixels true to scale at 70° latitude with a five­
kilometre pixel size. Five-kilometre pixels were averaged over
2 by 2 cells, yielding an effective pixel size of ten kilometres
square. (Further constraints imposed by the image analysis sys­
tem reduced this to 125 to 124 pixels.) SMMR data were con­
verted to the five-kilometre cells by simple duplication of pixels.
Further details are given in Maslanik et al. (1989). In this form,
color composites can be made consisting of combinations of
microwave, visible, and thermal-wavelength channels to high­
light different cloud and surface features in the data.

The study area (Figure 1) is centered on the Kara and Barents
Sea, extending north toward the pole and south toward Norway
and the Siberian coast. Novaya Zemlya is near the center of the
image. Shown are AVHRR channels 1, 3, and 4 for 1 July 1984.
Both AVHRR and SMMR imagery were also acquired for 4 July
1984. While covering only a small portion of the Arctic Basin
(1250 by 1250 kIn), it includes representative samples of all sur­
face types found in the Arctic: snow-covered and snow-free
land, sea ice of varying concentrations, and open water.

METHODOLOGY
Four surface classes are of interest in this study: snow-free

land, snow-covered land/ice cap, open water, and sea ice (ab­
breviations used: LAND, SNOW, WATER, and ICE). Three broad
classes of cloud - low, middle, and high - are defined by
temperature as measured in AVHRR channel 4 and are further
categorized by the underlying surface type. Not all surface/cloud
level combinations occur in the study image, and those that do
not are excluded from the analysis. Eight cloud classes are ex­
amined: low cloud over land, water, and ice; middle cloud over
water and ice; and high cloud over land, water, and ice (abbre­
viations used: LCLL, LCLW, LCLl, MCLW, MCLl, HCLL, HCLW, and
HCLl, respectively). The data are classified by two procedures:
a neural network and a maximum likelihood classifier. The max­
imum likelihood procedure is supervised, initially using the same
training areas as used to train the neural network.

The development of neural network architectures as a com­
putational method builds on the fact that the brain is overall
much more powerful in processing information than any serial
computer. Neural networks (NN), connectionist systems, or par­
allel distributed processing (PDP) systems consist of networks
of independent processors or units that are highly intercon­
nected and process information through interaction between
the individual processing nodes. Interaction between proces­
sors is determined by the network architecture: the number of
layers, number of units in each layer, strengths of the connec­
tions (weights) between the units, unit activation functions,
learning rules, and data representation. The advantage of PDP
in the example presented here is the capability of such networks
to learn by example. Through the use of learning rules, a neural

FIG. 1. The study area on 1 July 1984 showing Novaya Zemlya (at #2)
in the center (75°N, 600 E), and the Kara (at #4 and #7) and Barents
Seas (at #3). Sea ice covers most of the Kara Sea as well as the area
north (toward lower left corner of image) and east (left) of Novaya Zemlya.
Total area covered is approximately (1250 km)2. Shown are AVHRR chan­
nels 1, 3, and 4. Examples of each target surface/cloud class are shown
numbered as (1) LAND: snow-free land; (2) SNOW: snow-covered land/ice
cap; (3) WATER: open water; (4) ICE: sea ice; (5) lCll, (6) lClW; (7) lCU:
low cloud over land, water, and ice, respectively; (8) MClW; (9) MCU:

middle cloud over water, ice; (10) HCll (now shown), (11) HClW; and (12)
HCLI: high cloud over land, water, ice. These classes were identified through
a manual interpretation of AVHRR and SMMR data (see Figure 2).

network adjusts its connection weights to associate a set of in­
put patterns with a set of output patterns and thereby "learns"
the relationship between the input and output. In this study,
multispectral data in training areas provide the input pattern;
the desired cloud/surface class is the output pattern. Because
processing in PDP systems is done through the interaction of
many processing units, neural networks further display a fea­
ture known as "graceful degradation" where, given partially
missing or noisy information, they are frequently capable of
computing meaningful output. Of course, if classes are over­
lapping in feature space, and one or more of the features which
best discriminate between classes are missing or otherwise cor­
rupt, the network may produce in incorrect classification.

Forward-feed networks consist of a layer of input units, one
or more layers of hidden units, and a layer of output units. The
input units have direct connections to the units in the hidden
layer, which in turn are connected to the output layer. Infor­
mation processing flows from the input layer through the hid­
den layer to the output layer, and no feedback mechanism from
the output to the input layer exists. There are also no direct
connections between individual nodes within a layer. The rel­
atively small number of connections, and therefore number of
learnable connection weights, allows this type of network to
train quickly while still being capable of solving complex prob­
lems through the construction of powerful generalizations.

A back-propagation network learns in the following way. An
input and a training pattern - the"correct" output for a given
input - are presented simultaneously to the network. Through
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the connections, which are initially random, the network com­
putes an output pattern, which is then compared to the training
pattern. The error between the output pattern and the training
pattern is used to adjust the weights between the output and
hidden units to minimize the error between the training pattern
and the output pattern. Because the output units are directly
connected only to the hidden units, the training error is prop­
agated backward through the network so that the weights be­
tween hidden and the input layer are also adjusted according
to the learning rule (McClelland and Rumelhart, 1988). Training
and input patterns are presented to the network many times
while the network is adjusting its weights to minimize the error
between all input and training patterns. The network will con­
verge on a solution that maps the set of input vectors to the set
of output vectors, if such a mapping function exists. During
this training process, the units in the hidden layer construct
generalizations or internal representations of the input patterns.

The network presented in this paper uses a forward-feed ar­
chitecture with a layer of seven input units representing the
AVHRR and SMMR channels, a layer of ten hidden units, and a
layer of 12 output units representing the surface/cloud classes.
The network is trained on patterns (training areas) for each
desired class. After training, the network is presented with the
complete data set (image) and computes a membership value
for each pixel, represented by the activation of the output units.

Where spatial and spectral boundaries between phenomena
are diffuse, hard classifiers which produce mutually exclusive
classes seem particularly inappropriate. This issue is discussed
further in Key et al. (1989) in relation to the fuzzy c-means
algorithm. The neural networks approach addresses this prob­
lem of often indistinct spectral boundaries between classes by
providing as output a numeric value as well as the class symbol
for each pixel. This is a membership value for the pixel to each
class, and is in the range [0,1], larger values implying greater
strength of membership in a particular class. With the activation
function used in this study (sigmoid), these values are approx­
imately linear throughout the range.

In this example, two sets of training areas (referred to as TAl
and TA2) were selected in the typical supervised manner, with
each training area manually delineated in the digital imagery.
The training sets were chosen so that the effects of different
within- and between-class variability could be tested, with TAl
representing a relatively small sample designed to study the
ability of the neural network to address within-class variability
not contained in the training statistics (e.g., the variability ex­
pected due to changes in ocean and ice temperature, ice con­
centration, and cloud height and thickness over space and time).
TAl included 1 percent of the 15,500 pixels (125 lines by 124
pixels) in the test data set. Additional training areas were in­
cluded in TA2 to expand the variance of the training statistics
sufficiently so that a significant portion of the test images would
be classified using the maximum likelihood classifier. TA2 in­
cluded about 9 percent of available pixels. Class means by spec­
tral channel were nearly the same in TAl and TA2 but, with the
exception of the LCLl class, standard deviations were twice as
large on average in TA2 (mean standard deviation in ON of 1.9
for TAl versus 3.8 for TA2). As noted earlier, selection of training
areas this large is not practical for climate applications requiring
analysis of many images over large areas (thus, the impetus to
test the neural network using TAl). However, TA2 was needed
to address the trade-off between classification accuracy and hu­
man interaction using the supervised maximum likelihood ap­
proach for the types of data used here. The 1 July and 4 July
images were manually interpreted using digital color compos­
ites of several AVHRR and SMMR channels. The manual inter­
pretation thus acts as a hard classifier, with classes that consist
of a "best-guess" estimate of class membership based on visual

clues. Maximum likelihood (ML) classifications of the 1 July and
4 July images with seven data channels as input were carried
out using TAl and TA2 statistics. The ML procedure was run on
a DEC MicroVax computer and required approximately 1 CPU
minute for the computation of training area statistics and 2.5
minutes for image classification.

The neural network was trained using the individual pixel
values in TAl as input patterns. The network learned these sets
of spectral patterns in approximately 23 minutes on an IBM PC/
AT (12 MHz) class machine. The trained network then classified
the entire study area in approximately 4 minutes. To address
indistinct spectral boundaries, pixels were assigned to the class
with the highest membership value. Pixels with no membership
value greater than 0.4 (arbitrary) were tagged as unclassified.
In an attempt to similarly relax the restrictions of the maximum
likelihood classifier, cut-off limits for pixel position within the
n-dimensional Gaussian class-membership curve were varied to
a maximum of 99 percent, and different a-priori probabilities
were tested.

RESULTS

Figure 1 illustrates many of the problems involved in map­
ping polar surfaces and clouds. With the exception of land!
water boundaries, edges between classes are typically indis­
tinct, as is the case at the sea ice margins where the transition
from high concentration ice to open water is not distinct. For
classes that include thin cloud, such as the regions of low cloud
over ice and water, cloud opacity varies within the class. The
sensors therefore record varying proportions of surface and cloud
within a single class. Cloud height is also subjective; heights
actually may fall anywhere within the low, medium, high des­
ignations.

A manual classification of the 1 July image with the classes
described previously is shown in Figure 2, and will be used for
comparison to the neural network and maximum likelihood re­
sults. Eighteen percent of the image was left unclassified where
no dominant class could be determined. As noted above, within-

FIG. 2. Manual classification of the data shown in Figure 1. Classes are
the same as in Figure 1 with the addition of U: unclassified.
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TABLE 1. PERCENT OF IMAGES CLASSIFIED BY METHOD AND TRAINING
SET.

FIG. 3. Neural network classification of the study area. Classes are the
same as in Figure 2. A pixel's class is the one in which it exhibited the
largest membership value. A pixel is left unclassified if none of its mem­
bership values exceeds 004.

class variance is large, particularly in classes LCLl and LCLW.
Coefficients of variation are greatest in the 18 GHz SMMR data
and for the AVHRR visible-wavelength channels within these
classes, suggesting some confusion between ice and open water.

Table 1 shows the total percentages of the 1 July and 4 July
images that were actually classified using training areas TAl and
TA2, ad the ML and NN classifiers. The neural network (NN)
classification of the 1 July image is shown in Figure 3. Some
important differences are apparent between the neural network
output and the manual classification in the ICE and LCLl classes.
The NN results underestimate the amount of low could over ice.
The NN classification also puts a larger portion of the ice margin
area into the WATER rather than ICE class. The contingency table
(Table 2) comparing classifications of the 1 July image using NN
and the manual interpretation confirm this, and also shows that
NN tends to assign cloud/surface classes to surface classes, par­
ticularly in the case of ICE versus LCLl and WATER versus LCLW.
Confusion also exists between cloud height classes. Of the pix­
els classified in both the NN and manual classifications (i.e.,
excluding unclassified pixels), overall agreement between clas­
sification schemes is 53 percent. The NN classification of the 4
July image shows similar patterns. As was the case for the 1

DISCUSSION

The pattern of weights in the network provides insight into
the way decisions are made by the network. For our example,
interpretation of these weights sheds light on which spectral
channels are important for classifying particular cloud/surface
classes. Similarly, the network weights indicate, for each output
class, the degree of information redundancy among channels
in the input data; channels that are only weakly weighted add
little additional information to the classification process. Figure
5 shows an example of the connections between the input chan­
nels, hidden layer neurons, and the output classes in the trained
network used here. Due to the complexity of the connections
between units, only the surface classes are shown in the figure.
The identification of the exact role of hidden units is difficult,
as they often represent generalizations of the input patterns.
Strength of the connections shown varies from 0.6 to 0.9 (on a
scale of -1.0 to + 1.0). These connections are summarized in
Tables 4 and 5. Table 4 shows with which input data channel
each hidden node is associated in the trained network. Table 5
shows the association between hidden units and the output
data classes. Following the connections through these two ta­
bles, therefore, indicates which input channels are linked to
particular output classes. As shown in Figure 5 and Table 5,
snow-free land has strong connections with hidden layer neu­
rons, 2, 3, and 6, all of which represent thermal AVHRR channels
and the SMMR channels (Table 4). We may therefore conclude
that land is best distinguished from the other channels by its
physical temperature and its emissivity in the microwave por­
tion of the spectrum. Snow/ice cap is identified by its albedo
and temperature, with no significant information gained from
the microwave signature. The identification and discrimination
of ice from the other classes requires albedo, temperature, and
microwave emissivity characteristics. The connections show that

July data, nearly the entire image was classified. Differences
between the NN results and manual classification for 4 July were
greatest between cloud height classes and between low cloud
over ice versus clear sky over ice.

Maximum-likelihood classified images are shown in Figure 4
for 1 July using TA2 statistics. Because the ML classification using
TAl essentially included only those pixels within and adjacent
to the TAl training areas, these images are not illustrated. Com­
paring the manual interpretation in Figure 2 with the ML clas­
sification shows that the ML classification using the more
comprehensive training areas of TA2 effectively captures the basic
cloud and surface patterns. However, more than half of the
manually-interpreted MCLW class is left unclassified by ML. Re­
maining unclassified pixels are divided among cloud classes and
ice/water classes. A contingency table (Table 3) of the manual
classification versus the ML classification using the TA2 training
areas illustrates the problem of distinguishing between cloud
height classes and between intermediate mixes of cloud and
surface classes. This supervised ML classification achieved a high
agreement of 85 percent, representing the large training set in
TA2. Extension of these TA2 signatures to the 4 July data using
ML illustrates the reduction in applicability of training signa­
tures over time compared to the NN classifications, as shown
by a general decrease in the percentage of the image that is
classified. Given the variability of ice conditions and cloud
thicknesses within a single image, it is not surprising that day­
to-day variability is enough to reduce the representativeness of
the training areas in terms of class mean and covariance. With
the exception of class LCLl, standard deviations of training areas
in TAl are considerably less than is the case for TA2 and the
manually interpreted classes. TAl signatures thus include only
a small portion of the variance in the desired classes, as indi­
cated by the low percentage of the image actually classified
using TAl statistics.

2
3

70
53
96
93

% Classified
1 July
4 July
1 July
4 July
1 July
4 July

Image
TAl
TAl
TA2
TA2
TAl
TAl

Training
Set

ML
ML
ML
ML
NN
NN

Method
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TABLE 2. CONTINGENCY TABLE SHOWING THE PERCENTAGE OF PIXELS IN THE IMAGE CLASSIFIED IN EACH OF THE TWELVE CLASSES BY THE MANUAL
INTERPRETATION (HORIZONTAL) AND THE NEURAL NETWORK (VERTICAL) USING TRAINING SET TA1. PERCENTAGE = NUMBER OF PIXELS IN CLASS/TOTAL
NUMBER OF CLASSIFIED PIXELS [12,2511. TOTAL AGREEMENT (SUM ALONG THE DIAGONAL) = 52.7%, BASED ON 1% OF THE IMAGE USED IN TRAINING

AREAS.

NN MANUAL CLASSIFICATION
Class LAND SNOW WATER ICE LCLL LCLW LCLl MCLW MCLl HCLL HCLW HCLl

LAND 2.92 0.01 0.00 0.18 0.00 0.00 0.24 0.00 0.00 0.04 0.00 0.00
S OW 0.00 1.01 0.00 0.00 0.00 0.00 0.18 0.00 0.04 0.15 0.00 0.00
WATER 0.58 0.58 14.41 2.47 0.00 4.04 0.58 1.40 0.27 0.05 0.15 0.03
ICE 0.01 0.06 0.00 6.17 0.00 0.00 13.46 0.00 0.08 0.01 0.00 0.08
LCLL 0.03 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.13 0.00 0.00
LCLW 0.00 0.03 0.00 0.00 0.00 4.90 0.03 3.01 0.10 0.38 0.01 0.00
LCLl 0.01 0.01 0.04 0.19 0.00 2.82 10.99 3.10 2.95 2.18 0.04 0.25
MCLW 0.00 0.00 0.00 0.00 0.00 3.69 0.00 6.29 0.86 0.13 0.38 0.00
MCLl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 2.09 0.25 0.01 0.04
HCLL 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
HCLW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.19 0.00 2.40 0.01
HCLl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.17 1.45

TOTAL % 3.6 1.7 14.5 9.0 0.0 15.5 25.9 14.7 6.6 3.4 3.2 1.9
AGREEMENT 82.2% 59.4 99.7 68.5 0.0 31.7 42.4 42.7 31.8 0.0 75.9 78.0
(NNfTOTAL)

FIG. 5. Connections between the input channels, hidden layer neurons,
and the output classes in the trained network. Output neurons represent
the surface classes only. Strength of the connections shown varies from
0.6 to 0.9 (on a scale of -1.0 to + 1.0). See also Tables 4 and 5.

Finally, note that hidden layer neurons 1 and 5 do not "listen"
to any inputs, and therefore do not add any information to this
network.

Although both the neural network and the ML classifier use
the same training data, some fundamental differences exist in
the way they are used. The neural network does not directly
address the mean and covariance within a training area. In­
stead, each pixel within the training area is a separate pattern
that directly influences the development of node weights. The
multispectral characteristics of each pixel imprints itself to some
degree on the network connections. During the development
of unit weights as part of the network training phase, some
aspects of training area means and covariances are included in
the weight assignments. However, unlike the ML classifier, the
neural network is not limited to assuming a statistical relation­
ship between pixels within a class and is not restricted by as­
sumptions of normality in the data. The fact that the multispectral
data used here often violate these assumptions (Key, 1988) may
contribute to the low percentage of the data classified using ML
and the training statistics in TAL

To test this hypothesis, a synthetic data set of AVHRR and
SMMR data was developed that exhibited truly normal data dis-
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FIG. 4. Supervised maximum likelihood classification of the study area.
Classes are the same as in Figure 2.

cloud identification is a function of height, with thermal char­
acteristics being more important for middle- and high-level
clouds. The identification of low cloud depends on the under­
lying surface, where temperature is an adequate discriminator
if the cloud is over land, albedo and temperature are used if
over water, and temperature and the longer-wave reflected so­
lar component (AYHRR channel 3) are needed if over ice. The
hidden layer neurons with connections to AYHRR channel 3
(numbers 7 and 9) are also connected to either channel 2 or
channels 4 and 5, indicating that both the reflected solar and
thermal components of channel 3 likely playa part in the clas­
sification. The connections demonstrate the usefulness of AYHRR
channel 3 for discriminating between cloud and snow or ice.
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TABLE 3. CONTINGENCY TABLE SHOWING THE PERCENTAGE OF PIXELS IN THE IMAGE CLASSIFIED IN EACH OF THE TWELVE CLASSES BY THE MANUAL

INTERPRETATION (HORIZONTAL) AND THE SUPERVISED MAXIMUM LIKELIHOOD PROCEDURE (VERTICAL) USING TRAINING SET TA2. PERCENTAGE = NUMBER

OF PIXELS IN CLASS/TOTAL NUMBER OF CLASSIFIED PIXELS [9,3741. TOTAL AGREEMENT (SUM ALONG THE DIAGONAL) = 84.8%, BASED ON 9% OF THE

IMAGE USED IN TRAINING AREAS.

ML MANUAL CLASSIFICAnON
Class lAND SNOW WATER ICE lCLL lClW lCLI MClW MCLI HCll HClW HCLI

lAND 4.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SNOW 0.00 1.37 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
WATER 0.00 0.00 13.64 0.05 0.00 1.46 0.00 0.08 0.00 0.00 0.00 0.00
ICE 0.00 0.00 0.00 7.56 0.00 0.00 0.23 0.00 0.02 0.00 0.00 0.00
lClL 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lClW 0.00 0.00 0.41 0.00 0.00 10.60 0.00 2.89 0.00 0.00 0.02 0.00
lCLI 0.02 0.12 0.00 1.09 0.00 0.17 29.38 0.07 0.10 0.12 0.00 0.00
MCLW 0.00 0.00 . 0.08 0.00 0.00 3.92 0.00 4.35 0.00 0.00 0.02 0.00
MCL! 0.00 0.00 0.00 0.00 0.00 0.02 0.33 0.36 5.79 0.45 0.07 0.05
HCll 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.05 1.67 0.00 0.00
HClW 0.00 0.00 0.03 0.00 0.00 0.64 0.00 1.54 0.00 0.00 3.29 0.00
HCLI 0.00 0.00 0.02 0.00 0.00 0.00 0.05 0.00 0.81 0.00 0.02 2.71

TOTAL % 4.5% 1.5 14.2 8.7 0.0 16.8 30.1 9.3 6.8 2.2 3.4 2.8
AGREEMENT 98.5% 91.9 96.1 86.9 0.0 63.1 97.6 48.8 85.5 74.6 96.2 98.2
(ML/TOTAl)

TABLE 4. CONNECTIONS BETWEEN THE INPUT CHANNELS AND THE HIDDEN

LAYER IN THE TRAINED NEURAL NETWORK.

TABLE 5. CONNECTIONS BETWEEN THE OUTPUT CLASS AND THE HIDDEN

LAYER IN THE TRAINED NEURAL NETWORK.

tributions. Rectangular cloud and surface objects of varying sizes
and locations were generated whose dimensions were ran­
domly chosen within a restricted image. Object regions were
then filled with normally distributed data for each channel based
on pre-specified means and standard deviations (Gaussian ran­
dom number generator) characteristic of the polar clouds and
surfaces. With this data set there will be only one statistical
class for each physical class (e.g., land, low cloud over water,
etc.). For this reason, and because the data are normally dis-

Hidden layer
(Neuron number)

o
1
2
3
4
5
6
7
8
9

Output Layer
(Class)

lAND
SNOW
WATER
ICE
lCLL
LClW
lCL!
MCLW
MCL!
HClL
HClW
HCLI

Input Channel Connections
(AYHRR: 1,2,3,4,5; SMMR: 18,37)

1,2,4,5
NONE
5, 18, 37
4,5,18
2,18
NONE
4, 5, 18, 37
2,3
1,18
2,3,4,5

Hidden layer
(Neuron number)

2,3,6
o
1, 3, 5, 6, 7, 8, 9
1,3,5,8
6
0,9
9
1,4,5, 7, 9
0,4,5,9
2,4,7
1,4,5, 7, 8
0,3,4,8

tributed with a known variance, the probability of selecting a
training area representative of the population is higher than
with the actual data. Therefore, even small training areas should
provide enough information about each class to allow a larger
proportion of the area to be classified. This was in fact the case,
where training areas extracted from less than 1 percent of the
synthetic image allowed approximately 70 percent of the image
to be correctly classified by the ML procedure. This test suggests
that deviations from a normal distribution likely contribute to
the low percentages of classification using the ML classifier.

The ability of a neural network to compute similarity mea­
sures through a comparison of patterns contributes to its ability
to classify large portions of data on two separate images. Thus,
although a relatively small portion of the variability of clouds
and surfaces were captured in the training areas (particularly
TAl), the neural network was still able to reliably choose the
most appropriate output class. This property provides a means
to address the problem of signature extension over time and
space, since a properly trained network can make class assign­
ments-albeit with reduced confidence-in the face of atmos­
pheric effects or slight changes in spectral properties without
requiring a-priori knowledge of within-class variance or proba­
bilities of class membership. In fact, if one has a particular rea­
son to use a statistical classifier, the strength-of-membership
values calculated by a neural network could be fed back into
the statistical classifier as apriori probabilities using, for exam­
ple, the probability image feature in the ERDAS@l MAXCLAS func­
tion.

The classification example presented has utilized numeric
data-albedos and brightness temperatures-as input. Output
is on the nominal level for both the neural network and the ML
procedure, although the neural network also provides a type
of membership value. In some cases, input such as category
identifiers rather than measurements may be useful where pix­
els are assigned a class symbol and optionally an associated
fuzziness (e.g., the probability that the pixel belongs to the
class). A second neural network was developed that uses both
nominal and categorical input. For example, in the study area
the locations of land and permanent ice cap are known, and
the location and concentration of sea ice can be determined from
the SMMR data. Consider also the case where only three broad
categories of sea ice concentration are of interest: low (15 to 40
percent), medium (41 to 70 percent), and high (71 to 100 per-
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cent). Other variables are also possible; for example, time of
year, geographic location, spatial context, texture, stage of plant
growth, and the a priori probability of occurrence of each surface
or cloud type. For simplicity, however, the example is limited
to symbols representing land/not land, ice cap/not ice cap, and
low, medium, and high sea ice concentration variables.

This network was trained with input units corresponding to
both spectral and categorical variables. Because some of the
AVHRR and SMMR channels are highly correlated - as evidenced
from principal components analysis and an examination of the
previously described neural network, only AVHRR channels 1,
3, and 4, and SMMR channel 18 GHz vertical were used in the
training. Categorical input variables represent land, ice cap, and
sea ice concentration. Nine hidden layer units were specified
with output classes as before. As expected, the resulting clas­
sification (not shown) is similar to that using only spectral in­
formation but the proportion of correctly identified surface pixels
increased slightly, whereas the proportion of cloudy pixels re­
mained essentially the same. In addition, the certainty with
which surface pixels were classified as measured by the output
membership values increased significantly; with some coastal
pixels the increase was as much as 004.

CONCLUSIONS

Four surface and eight cloud categories in merged AVHRR and
SMMR data for the Arctic summer were identified through a
neural network approach and a traditional maximum likelihood
procedure. Both the numeric and the numeric/symbolic neural
networks extracted correct information from the multispectral
images. The differences between the neural network and the
supervised maximum likelihood classifications were primarily
due to the greater flexibility of the neural network to classify
indistinct classes, e.g., classes containing pixels with spectral
values that differ significantly from those in the training areas,
while ignoring assumptions of statistical normality. The two
classification approaches illustrate the tradeoffs between human
interaction in the selection of training areas and classification
accuracy and flexibility. Flexibility similar to that shown by the
neural network might be achieved using a maximum likelihood
routine by manipulating class membership probabilities and/or
by adjusting probability thresholds to relax the membership
requirements for individual classes. Such steps may require an
a priori knowledge of probabilities or may increase classification
error. In any case, such tuning was not effective in the example
described here.

The neural network approach to classification is generally less
rigid than the traditional maximum likelihood procedure in that
(1) there are no assumptions of distributions of variables and
relationships between them, (2) the network is easily trained to
learn the relationships between input and output, and (3) the
classification produces both a categorical value and a type of
membership value for each pixel. It is recognized that there is
some loss of information and interpretability with the departure
from statistical theory. Additionally, computation time required
for training the network is not trivial when compared to the
training of the ML classifier (i.e., computation of mean vectors
and the covariance matrix), although future hardware architec­
tures should alleviate this problem. Of course, training time as
a proportion of the total classification time decreases with the
amount of data processed, so that if classes do not change and
large images are being classified, overall processing time should
be similar for both methods.

The ability to interpret weights within the trained network
provides a potentially powerful tool for understanding the role
of inputs and the geophysical processes they represent in the
making of decisions. Through an examination of the connection
strengths between input, hidden, and output units, it is pos­
sible to identify which inputs influence the classification most,

and which are redundant. These relationships are not always
clear, and care must be taken in extending their interpretation
to physical processes. It was also shown that ancillary infor­
mation, even on a simplistic level, can improve classification
accuracy and can be easily included in a network. Although the
example provided indicated that maximum likelihood results
could be made to agree more closely with the manual interpre­
tation, this was achieved only after training areas were ex­
panded to include 9 percent of the test image. Such a degree
of training is impractical for remote sensing climate studies be­
cause of the volume of imagery that must be processed. We
emphasize that the data and applications of interest for remote
sensing of polar climate are not typical of applications such as
land-cover mapping, which may be limited to a single image
covering relatively small areas with small within-class variance.
This study does not show whether a neural network offers any
advantages for the latter type of analyses. The merits and draw­
backs of a neural network approach relative to others must
therefore be considered based on the particular problem at hand.
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