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Cloud Cover Analysis With Arctic Advanced Very High 
Resolution Radiometer Data 

2. Classification With Spectral and Textural Measures 

J. KEY 

Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder 

The variation in cloud amount over polar ice shoots, sea ice, and ocean surfaces can have 
important effects on planetary albedo gradients and on surfaco energy exchanges, so that 
monitoring of polar cloud cover is crucial to studios of climate change. The spectral and textural 
characteristics of polar clouds and surfaces for a 7-day summer series of advanced very high 
resolution radiometer (AVHRR) data in two Arctic locations are examined, and the results used 
in the development of a cloud classification procedure for polar satellite data. Since spatial 
coherence and texture sor•itivity tests indicate that a joint spectral-textural analysis based on the 
same cell size is inappropriate, cloud detection with AVHRR data and surface identification with 
passive microwave data are first done on the pixel level as detailed in part i (Key and Barry, 
1989). Next, cloud patterns within (250 km) v' regions are described, then the spectral and local 
textural characteristics of cloud patterns in the imago are determined and each cloud pixel is 
classified by statistical methods. Results indicate that both spectral and textural features can be 
utilized in the classification of cloudy pixels, although spectral features are most useful for the 
discrimination between cloud classes. This methodology provides a basis for future "objective" 
automated mapping of cloud typos and amount over snow and ice covered surfaces. 

1. INTRODUCTION 

High-latitude response to changes in cloud cover is a 
key area of uncertainty in evaluating changes in the 
global c]imat, e system. To better understand climatic 
forcing, statistical frameworks for describing the morpho]- 
ogy of cloud fie]ds as we]] as the radiative, dynamical, and 

in a later section, some of the problems that have been 
recognized with traditional spectral-textural classifiers 
have been alleviated, but others have been created. 

Cloud detection methods for use with satellite data that 

examine only spectral characteristics of pixels include 
single-channel and multichannel threshold methods, 

microphysical processes determining this morphology are radiative transfer models, histogram techniques, and 
needed [Committee on Global Change, 1988, p. 117]. Major statistical clustering procedures. These are reviewed in 
uncertainties exist in current cloud climatelogics for polar part I [Key and Barry, 1989]. Some studies have included 
regions as a result of the problem of discriminating clouds an analysis of texture in cloud classification schemes, 
over snow and ice using satellite visible or infrared data. generally in a clustering framework [e.g., Welch etal., 

This issuehasbeenaddressedin part I of this research 1988, 1989; Garand, 1988; Ebert, 1987, 1988, 1989; 
[Key and Barry, 1989], where an algorithm was presented Parikh, 1977]. Contextual analyses of frontal patterns 
that performs pixel-scale analysis of surface and cloud and cloud shadows are given by Gurney and Townsbend 
radiances utilizingvisible, therma] , and passive microwave [1983], Wang etal. [1983], Swain etal. [1981], and the 
data over a 7-day period. The purpose of this paper is to spatial classifier of Kettig and Landgrebe [1976]. 
examine the spectral and textural characteristics of sum- Global cloud climatelogics are reviewed by Hughes 
mertime polar clouds and surfaces in advanced very high [1984]. Vowinckel [1962], Huschke [1969], and Gorshkov 
resolution radiometer (AVHRR) data; the issue of the [1983] provide perhaps the most comprehensive cloud 
appropriate scale of measurement for texture measures climatelogics for the Arctic, but these are derived primari- 
will be addressed, and an optimal set of features is ly from surface observations. They show general agree- 
determined. This information is then used in the develop- ment in the seasonal cycle of total cloud amount but differ 
ment era procedure that classifies cloudy pixels (identified in the geographical distribution of cloud cover, particularly 
as such by the algorithm described in part 1) into recog- in the case of low cloud in winter. Spring and summer 
nizablecloud patterns. The methodology employed differs cloud amounts and patterns in the Arctic have been 
from other studies in that only the cloudy pixels are recently examinedbyKukla[1984],Robinsonetal. [1986], 
classified, in contrast to the method of gridding an image Barry etal. [1987], and McGuffie etal. [1988]. McGuffie 
and classifying the grid cells, which themselves may etal. [1988] compared three cloud analysis methods (two 
contain mixtures of surface and cloud types. As detailed manual and one automated) based on Defense Meteorolog- 

ical Satellite Program (DMSP) images. While cloud 
detection schemes exist for many data types and geograph- 
ic locations, the inherently subjective nature of defining 
cloud types and the algorithmic difficulty of incorporating Copyright 1990 by the American Geophysical Union. 
texture into the analyses are two inhibiting factors in the 

Paper number 89JD03422. development of the automated cloud typing methods 
0148-0227/90/89JD-03422505.00 needed for large-scale cloud climate]ogles. 
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2. DATA SET 

All five AVHRR channels (1, 0.58-0.68 pm; 2, 0.73-1.0 
pro; 3, 3.55-3.93 pro; 4, 10.3-11.3 ]zm; 5, 11.5-12.5 pm) 
are initially employed. Data from the Nimbus 7 Scanning 
Multichannel Microwave Radiometer in channels (SMMR) 

18 and 37-GHz vertical polarization, as well as SMMR- 
derived sea ice concentration, are used for surface parame- 
terization in the cloud detection step described in part 1 
[Key and Barry, 1989] but are not used directly in the 
analysis of cloud patterns. SMMR, SMMR-derived sea ice 
concentration, and AVHRR data were coregistered to a 
polar stereographic projection and used simultaneously. 
The effective pixel size of the AVI-IRR data is reduced to 
5 x 5 km [Maslanik et al., 1989]. 

Two areas of the Arctic are examined (Figure 1). One 

Area 1 on July 1 exhibits the greatest mixture of cloud 
patterns and clear-sky conditions of all the imagery and 
will be used to illustrate the methodology and classifica- 
tion results throughout the remainder of the paper. How- 
ever, spectral and textural characteristics as well as cloud 
pattern training areas were extracted from the complete 
set of imagery, and results are expected to be similar for 
other days. Figure 2 shows the study area in AVHRR 
channel I (visible). Novaya Zemlya is at upper center 
with sea ice above and to the lei•. Sea ice also occupies 
the lower left portion of the image. Grid lines delineate 
50x50 pixel or (250 kin) 2 regions. Figure 3 is an image of 
the cloud-only portion of Figure 2, shown in AVI-IRR 
channel 1 (visible) with grid lines delineating cells of 16 x 
16 pixels (section 3.3). This image was classified using the 

area is centered on the Kara Sea and Barents Sea extend- algorithm described in part. I [Key and Barry, 1989] and 
ing north to the pole and south to Norway and the Siberi- is briefly described in section 4 below. Low thin cloud 
an coast. The second area covers most of the Canadian over sea ice in the Kara Sea, which is not apparent in 
archipelago and Greenland, also extending to the pole. A Figure 2, is identified with AVHRR channel 3 and the 
7-day summer series (July 1-7, 1984) of these two areas temporal tests of the algorithm. Figure 4 is an image of 
is used in the analysis of cloud patterns. These areas SMMR-derived surface types showing land, sea ice, ice 
include representative samples of all surface types found cap, open water, and a narrow coastal zone. Inaccuracies 
in the Arctic: snow-covered and snow-free land, sea ice of in the identification of cloudy pixels result from incorrect 
varying concentrations, open water, and permanent ice 
cap. The observed conditions are usual for summer in the 
Arctic, as are the pressure patterns which occurred. 
Synoptic pressure patterns observed in Arctic Ocean buoy 
data [Colony and Munoz, 1986] during the study period 
are similar to the mean pattern for the month [Serreze 
and Barry, 1988; Gorshkov, 1983]. Although correlations 
have been observed between synoptic pressure systems, 
cloud amount, and cloud type [Barry et al., 1987], detailed 

surface identification due to weather effects in the passive 
microwave, resolution differences between the SMMR and 
the AVHRR, and coastal effects. 

3. FEATURES 

3.1. Spectral Features 
Five surface and three broad cloud classes are analyzed 

for their spectral characteristics. Surface types are snow- 
free land, snow-covered land, open water, medium- to 

cloud climatologies for the Arctic are not available and it high-concentration sea ice, and low-concentration sea ice. 
is therefore more difficult to make such a statement Cloud classes are defined by channel 4 brightness temper- 
concerning cloud cover. ature (T) assumed to represent temperatures at the top of 

optically thick cloud layers, and encompass the following 
categories: low, T > 265 K; middle, 245 _< T _< 265 K; and 
high, T < 245 IC Spectral and textural features were 
calculated only for "pure" classes, i.e., groups of contiguous 
pixels, or cells, that contain one and only one class as 
determined through a manual interpretation. Training 
areas were defined manually. 

Spectral features examined for each pixel are channel 
1, 2, and 3 reflectance; channel 3, 4, and 5 brightness 
temperatures; ratios of channels 2 and 1, 3 (reflectance) 
and 1; and channel 4 minus 5 (brightness temperature 
difference). The ratio of channel 2 to channel I in 
AVHRR data or the difference between channels 2 and 1 

enhances vegetation signals, arctic haze, and snow and sea 
ice underneath clouds. Channel 3 is important for the 
discrimination of low clouds over snow and ice surfaces. 

The difference between channels 3 and 4 aids in the 

det•.ct.ion of opfically thin cloud and fog, while the differ- 
ence between channels 4 and 5 is useful for identifying 
cirrus [Olesen and Grassl, 1985; Saunders, 1986]. For 
each cell, the mean and standard deviation are examined. 
These are first-order statistics that describe the distribu- 

tion of pixel values within a cell. 

3.2. Textural Features 

Fig. 1. Tho two study aroas within the Arctic, one centered on the Second-order statistics summarize the probability ofthe 
Kara and Barents seas and the other covering much of the intensity values of a pair of pixels. These relative fre- 
Canadian archipelago and northern Greenland. quencies are computed for each pair of pixels in a given 
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subsequent texture analyses. 
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Fig.4. Surface types corresponding to the area shown in Figure 2, from SMMR and SMMR-derived data. Surface 
categories are land, snow/ice cap, sea ice (aU concentrations), open water, and a narrow coastal zone. 

positional relationship and are summarized in a grey level subsequent analyses. Both GLD and GLCM texture 
cooccurrence matrix (GLCM). Positional relationships measures were initially computed for the AVHRR data 
refer to separation distance d and direction 0. Haralick sets. However, because of the similarity of these mea- 
et al. [1973] first used cooccurrence matrices to classify sures, only the GLD measures were retained because they 
terrains in aerial photographs with a very small matrix. are computationally simpler. 
Welch et al. [1988] and Kuo et al. [1988] computed a The variability of grey level differences is summarized 
number of measures from the GLCM for cloud analysis. by the contrast. Large values correspond to structured 
Higher-order textural statistics may also be calculated, clouds such as cumulus with shadows. The angular 
although they generally involve more computation and do second moment measures the homogeneity of gray level 
not necessarily .yield better results. Julesz [1975] has differences with distance and direction. Angular second 
argued that two textures with identical second-order moment will be high for decks of stratus and for bands of 
statistics are not discriminable. It is possible therefore clouds oriented in the direction of 0. Entropy describes 
that first- and second-order statistics are all that are the degree to which distinct scales of organization are 
needed to discriminate texture. unrecognizable. It is maximum when all radiance differ- 

Weszka et al. [1976] modified this method to operate on ences have an equal probability of occurring (i.e., the 
grey level difference (GLD) histograms rather than grey histogram is uniform) and low when texture is smooth. 
level pairs. The data are first quantized to 64 grey levels, See the appendix for more detail and definitions of the 
and the grey level difference g is computed for each pair texture measures. 
of pixels in the cell over each of four angles: up-down (0ø), If texture is coarse and d is small compared with the 
left-right (90ø), upper left-lower right (135ø), upper texture element size, the pairs of points at separation d 
right-lower ]eft (45ø). Texture may contain a directional will usually have similar gray levels and the histogram 
component so that the histogram must be specified as a will have high frequencies around g=0. Conversely, with 
function of angle as well as distance. A histogram of gray fine texture and d comparable to element size, the gray 
level differences is then constructed for each distance and level differences will often be large with a large spread in 
angle and used to compute various texture measures. The the frequencies of g. If texture is directional and d is in 
histograms will be spread over a larger range of g as the proper range, the degree of spread in the histogram 
graininess or streakiness increases. The grey level should vary with direction. Separation distances of 1, 2, 
difference texture measures calculated from the histo- 4, and 8 have been examined elsewhere [e.g., Weszka et 
grams are the mean, contrast, angular second moment, al., 1976; Parikh, 1977], with distances ofl or 2 preferred. 
and entropy for the cell. The mean, maximum, and range Welch eta/. [1988] found that optimal separation distance 
of these quantities over the four angles are used in depends on cloud type. However, the effect of pixel 
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resolution on textural features is unclear. Since a small abbreviations used in the remainder of the text are also 
cell size is used here (discussed below), and because given. 
separation distances of 1 and 2 function similarly in this These texture measures are calculated for the five 
data set, d=l is used. surface classes defined previously, and for 12 cloud classes 

Other texture measures are also examined. The area- which include some of the basic cloud groups and mixtures 
averaged Roberts gradient is maximum in regions of sharp of these as observed in the data: (1) Low thin cloud over 
brightness contrast and is therefore a measure of edge water (stratus); (2) Low thin cloud over ice (stratus); (3) 
strength [e.g., Gonzalez and Wintz, 1977]. It is defined Low thin cloud over land (stratus); (4) Low thick cloud, 
over any separation distance but does not have directional smooth texture (stratus); (5) Low thick cloud, bumps or 
sensitivity. Hobson [1972] and Harris and Barrett [1978] broken (stratocumulus); (6) Middle cloud rolls (broken, 
utilize a measure called vector strength. If the pixels linear altostratus usually over a stratiform layer); (7) 
within a cell are connected into a set of adjacent triangu- Broken middle cloud, not linear; (8) Middle thick cloud, 
lar planes, then texture can be measured through the smooth(a]tostratus, possibly over stratus); (9)Middle/high 
dispersion in three-dimensional space of normal vectorsto bumps (cirrocumu]us or altocumulus); (10) High thick 
these planes. Vector strength is a summary of the cloud with some middle cloud (broken cirrostratus over 
distribution of normal vectors and is high for smooth altostratus); (11) High thick cloud, smooth (cirrus or 
surfaces and low for rough surfaces. cirrostratus); (12) Cumulus. The surface was included in 
A two-dimensional Fourier transform [e.g., Bunting and classes 1-3 only because the clouds are thin and differed 

Fournier, 1980] is also applied to each cell as a means of primarily in albedo. Contributions from surfaces to cloud 
defining the texture of cyclical cloud patterns. Three albedo or temperature in the other classes was not signifi- 
measures are used: the streakiness factor, cell intensity, cant enough to justify defining additional classes. Class 
and the maximum ring density wavelength. The streaki- 7 is similar to class 6 but occurred at a higher altitude 
hess factor is a directional measure which takes on values (lower temperature). 
between 0 and 1, values near 1 being highly directional 
[Garand, 1988]. Cell intensity is the proportion of power 3.3. Cell Size 
in the spectrum associated with wavelengths between 20 The issue of cell size is important in that too large a cell 
and 40 km, the typical size of convective cells [Agee and may blur the boundaries between classes, while too small 
Dowell, 1976]. The maximum ring density wavelength is a cell may not permit adequate description of the textural 
the wavelength of the center of the annular ring in the and spectral features which distinguish between the 
power spectrum with the maximum density, where the classes. In addition, the larger the number of pixels in 
spectrum is divided into four rings. The spectral and each cell, the more reliable the statistical estimates will 
textural features are summarized in Table 1, where be. A number of cell sizes have been used in previous 

TABLE 1. Snmmary of AVHRR Spectral and Textural Measures 

Feature Abbreviation 

Single Pixel Spectral Measures 

Channel 1,2, 3 reflectance 
Channel 3, 4, 5 brightness temperature 
Ratios: 2/1, 3/1 
Brightness temperature difference: channels 4 and 5 

CH01, CH02, CH03 
CHT3, CHT4, CHT5 
RA21, RA31 
DF45 

Cell Spectral-Textural Measures (Channels 1,3,4) 

Spectral mean 

Standard deviation 

Grey level difference (mean, maximum, 
range over four directions) 

Mearl 

Contrast 

Angular second moment 
Entropy 

Roberts gradient 
Vector strength 
Fourier measures 

Streakiness factor 

Cell intensity 
Maximum ring wavelength 

MEAN 

SD 

MMEAN, XMEAN, RMEAN 
MCON, XCON, RCON 
MASM, XASM, RASM 
MENT, XENT, RENT 
RG 

VECTOR 

SF 

CI 

WAVE 
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cloud classifications; for example, Ebert [1987] clustered 32 from 1 to 6. Means of cells of sizes 2, 6, 10, 14, 18, and 22 
x 32 (128 kin) 2 AVHRR cells; Garand [1988] analyzed 64 pixels square were then calculated, and their relative 
x 64 (128 km) 2 GOES cells; Wu et al. [1985] examined 20 frequency distributions were examined. These are shown 
x 20 and 5 x 3 (20 kin) 2 GOES-2, SMS-2, and GOES-4 in Figure 5 for cell sizes of 6 to 22. Classes in the synthet- 
cells in a study of rainfall; Weszka et al. [1976] used 64 x ic data set with means of 10, 30, 50, 70, 90, and 110 (the 
64 Landsat -1 cells; Parikh [1977] computed texture from standard deviation of each class is 1.5) are well represent- 
64 x 64 (205x355 km) NOAA -1 data; Hara!ick and ed by means of 6 x 6 cells and poorly represented by 22 x 
Shanmugam [1974] introduced many of the texture 22 cells. Cells with means between the class means 
measures described with 64 x 64 (7.5 square miles) ERTS - contain one or more boundaries. In all cases but the last, 
1 data; and Welch et al. [1988] used 512 x 512 (29 km) 2 each ofthe class means is apparent in the histogram, with 
Landsat cells. Cell sizes seem to be chosen somewhat mixing increasing with increasing cell size. 
arbitrarily, although cell size has been chosen as a power Cells representing single classes will exhibit a mean 
of 2 in those studies which employ the fast Fourier very near the class mean and will have a small standard 
transform. The cell size used here was based on a number deviation. In determining which cell size is optimal, these 
of measures, both quantitative and qualitative. cells are located in the histograms, and the change in their 

In an attempt to quantify the effect of cell size, the relative frequency with changing cell size is observed. We 
texture measures were calculated for the cloud and surface accept as "pure" cells which have standard deviations no 
classes using cell sizes of 4 to 24 in increments of 2 with greater than a small percentage of the range of the data, 
a separation distance of 1. Generally the texture values as defined by the spatial coherence method of Coakley and 
either remain essentially unchanged or decrease/increase Bretherton [1982]. The relative frequency histogram of 
linearly for cells of size 24 down to 16. Cell sizes of 10 or these cells is then determined (Figure 5, horizontal bars). 
less often produce highly variable texture values. Values The figure shows differences between the frequency of 
for cells of size 12 and 14 are similar to those with sizes pure cells with means the same as the class means and 
16 and larger but are more variable. A paired t test for the frequency of all cells with those means. This differ- 
the difference between cell sizes, with the null hypothesis ence tends to increase with increasing cell size and is 
that there is no difference between the means, indicates attributable to cells which contain a mixture of classes and 
that there appears to be a difference between cells of sizes therefore have large standard deviations. This indicates 
8, 16, and larger (0.05 level of significance). In no cases that classifications which rely solely on cell means for 
can we conclude that there is a significant difference discriminating between classes are likely to have a high 
between texture measures extracted from cells of sizes 14 error rate. Next, peaks in the histogram of pure cells are 
and 16, 16 and 18, and 14 and 18. Other pairs show examined to determine the probability that the grouping 
results between these two extremes. These results are would occur by chance; i.e., that the peak and surrounding 
reasonable if we wish to maximize the number of texture intervals represents a uniform distribution. These proba- 
elements within a cell. Usually, these basic texture bilities are given by a multinomial distribution function. 
elements exist on a smaller scale; for example open This test of separabi]ity shows that two classes are lost 
convective cells are 20-40 km and cloud rolls which have with cells of size 14, three are lost when cells of size 18 
wavelengths of approximately 40 km. Additionally, are used, and none are r•.presented by cells of size 22. 
Garand and Weinman [1986] found that cloud texture is Based on these tests, a cell size of 10 pixels square is 
best measured over mesoscale regions, of the order of the approximate upper limit of spatial coherence if an 
100-250 km square. The approximate lower limit in the image is uniformly gridded. Conversely, a cell size of 16 
above analyses is 16 x 16 pixels, or (80 kin) 2 at the 5-km seems to be the approximate lower limit for texture 
pixel mapping. analysis. This discrepancy implies that a joint spectral- 

In addition to capturing the basic texture of a class, we textural analysis based on the same cell size is inappropri- 
are also interested in ensuring that as many cells as ate. For the following texture analyses of pure classes, a 
possible in an image represent only one class. The pixels cell size of 16 is used. Of course, these tests apply to this 
within a cell containing a relatively uniform surface data set only. See Welch et al. [1989] for a discussion of 
should exhibit a high degree of spatial coherence and resolution effects on texture measures. 
therefore have a relatively low standard deviation when 
compared to a cell which contains a boundary between two 3.4. Choice of Features 
classes that are widely separated in feature space. To There will undoubtedly be a high degree of redundancy 
further investigate the effects of different cell sizes, a in the spectral and textural variables available fbr analy- 
single-channel synthetic image was created which consists sis. Benefits in terms of processing as well as interpretab- 
of rectangular "objects" of varying sizes and locations. The ility are gained by reducing this set of features to a set 
minimum and maximum allowable sizes of objects are that includes only those containing the greatest amount of 
specified. An object is generated whose dimensions are discriminatory information for the classes of interest. To 
randomly chosen within the restricted range, and the class create this set for cloud-surface analysis using the AVHRR 
of the object is randomly assigned (unifom random imagery, correlations between features over all classes 
number generator). Regions are filled with data for that were examined through principal component analysis 
class with a Gaussian random number generator based on (PCA), both unrotated and rotated (Varimax). It is also 
a specified mean and standard deviation. A grid of size possible to examine correlations between pairs of variables 
300 x 300 "pixels" was generated with subregions of sizes in a correlation matrix, as has been done by Garand 
5 to 40 pixels, representing objects of sizes 25-200 kin. [1988] andEbert [1987]. Since variables which have large 
Each of these areas was then assigned a class number loadings on the same component generally have large 
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Fig.5. Effect of cell size on the computation of the mean of all cells 

correlations between themselves, this method provides 
little additional information. 

Principal component analysis was applied to both study 
areas, and the original nine spectral features were reduced 
to four components with eigenvalues greater than 1.0. 
Components with eigenvalues less than 1.0 account for 
less variance than the original variable and are not 
retained. It is also recognized that beyond the first few 
components, patterns may be essentially random. The 
representation of each component is listed in Table 2. The 
first component represents channel 3, the 3-4 difference, 
and the ratio of channel 3 to channel 1. Component II 
represents channels 4 and 5; channels I and 2 load highly 
on component III; component IV represents only the 4-5 
difference. The 2/1 ratio loaded highly on component V, 
but its eigenvalue was only 0.5. 

The discriminatory capability of features for all pairs of 
classes was also determined using a divergence parameter, 
Fisher distance, defined as 

where p• is the mean for variable i on class j or k and o i 
is the corresponding standard deviation. The divergence 
parameter measures the ability of the feature to differenti- 
ate between classes and is computed for each variable and 
each pair of classes. The higher divergence values corre- 
spond to greater usefulness in distinguishing between 

classes, where Dij k > 1.0 has discriminatory skill and Dij • 
< 0.5 generally has poor separating power [Garand, 1988]. 
The number of times a variable ranked first, second, etc., 
in Fisher distance was tabulated in matrix form. Since 

PCA implies that of the nine original features only three 
or four are statistically independent, the top four ranked 
features for each class pair are most important. Channel 
1 scores highest most often followed by channel 2 and 
channel 4. The ratio features 2/1 and 3/1 and channel 3 
follow in rank. 

The number of features can now be reduced even 

further on the basis of the joint results of PCA and 
divergence calculations. Since channel 1 scored higher 
more often than channel 2 and since they are highly 
correlated, channel 2 was eliminated and channel 1 
retained. Similarly, channel 4 was retained and channel 
5 eliminated. The channel 3 features were similar in 

discriminatory capability so any could be retained. These 
two features are of particular interest in discriminating 
between water and ice clouds. The 4-5 difference did 

poorly in divergence ranking and would be of little value 
in this classification application. 

The same PCA and divergence parameter methods were 
applied to the spectral and textural features calculated for 
the 16 x 16 pixel cells. PCA identified 12 components with 
eigenvalues greater than 1.0. Table 3 lists these compo- 
nents and which variables they represent. The first three 
components represent most of the variables and provide 
an obvious division of the three channels. This indicates 

that texture measures within a channel vary together to 

over an artificially generated data set. Means of classes are 10, a stronger degree than between channels. This result is 
30, 50, 70, 90, and 110. The plots show the relative frequency of import, ant when considering the utility of spectral and 
cells with various means, indicating mixtures of classes. Horizon- textural variables in classification studies. 
tal bars show frequency of "pure" cells, i.e., cells containing only The results of the divergence parameter testing for the 
one class. texture measures are given in Table 4. RG, VECTOR, 
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TABLE 2. The First Four Principal Components of the Nine Spectral Variables. 

Component Features Variance, % 

I Channel 3, 3-4 difference, 3/1 ratio 27.0 
2 Channels 4 and 5 25.5 

3 Channels 1 and 2 25.1 
4 4-5 difference 12.0 

TOTAL 89.6 

Underlined features are used in the final classification. 

TABLE 3. First Twelve Principal Components of the Textural Variables. 

Component Features Variance, % 

I Channel 4: all except those listed below 23.2 

2 Channel 3: all except those listed below 19.4 

3 Channel 1: all except those listed below 18.2 

4 Channel 1: MEAN, VECTOR MASM, 7.0 
XASM 

5 Channel 3: RASM, RENT 
Channel 4: RASM 4.9 

6 Channel 1: RASM, RENT 3.9 

7 MEAN 3 2.4 

8 CI1, RCON1,3,4* 2.2 
9 SF3, WAVE3* 2.l 
10 C[ 3 1.8 
11 SF4, WAVE1, CI1' 1.8 
12 CI4, WAVE4, WAVE3* 1.7 

TOTAL 88.6 

Subscripts refer to AVHRR channel numbers. 

*Loading • 0.4; no large loading on any component. 

TABLE 4. Texture Variables Retained At•er Divergence Parameter Analysis 

Channel Texture Features 

RG.__ s, VECTOR 4, MMEAN s, XMEAN 3, MASM 4, XASM 4, MENT s, RENT s, 
XENT 3, SD 3 
RG 2, VE•'•OR 2, MMEAN 2 , XMEAN 2, MASM 2, XASM 2, MENT 2, XENT 2, 
SD 2 

R_.G_G •, VECTOR •, XASM •, MENT •, SI) 1 

Underlined features ranked highly for cloud class pairs and are used in the final analysis. 
Superscripts refer to principal components. 
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XASM, MENT, and SD ranked high in all three channels. 
XASM, XENT, and XMEAN indicate that directionality is 
an important component to the texture of some of the 
classes. With most pairs of classes, the spectral MEAN 
and SD features ranked higher than the GLD texture 
measures. 

The angular second moment, vector strength, and 
entropy texture measures are most useful in surface-cloud 
discrimination. Specifically, snow-water-land and cloud 
texture differences were best described by angular second 
moment and entropy while ice and cloud differences 
appeared in the vector strength and entropy measures. 
Entropy was also important in discriminating between the 
cloud classes. Differences between ice concentrations 

appeared in the Roberts gradient, entropy, and vector 
strength. Overall, spectral features were most important 
for discriminating between surface types, this being in 
agreement with the findings orEbert [1987]. Entropy and 
angular second moment were also chosen in the cloud 
texture analyses of Welch et al. [1988] and Ebert [1987, 

When the divergence parameter ranking is considered 
for pairs of cloud classes only, the number of useful 
texture measures is reduced even further. Channel 3 

texture measures did not rank as highly as channel 1 and 
4 measures. In the latter two channels, the Roberts 
Gradient, vector strength, maximum angular second 
moment, mean entropy, and standard deviation ranked 
highly most ot•en and are used in the final analysis of 
cloud patterns. 

4. CLOUD PA7rERNS 
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The cloud analysis methodology employed here includes 
cloud detection on the pixel scale, a description of cloud Fig.6. Flow chart ofthecloud analysis procedure. Cloud detection 

is addressed in part I [Key and Barry, 1989]. The analysis of 
patterns on a regional scale, and a classification of cloudy cloud patterns is done both for (250 kin) 2 regions, and over the 
pixels based on spectral and local textural characteristics. entire image utilizing spectral and local textural measures. In 
This procedure is summarized in Figure 6. The cloud the latter case, pixels are classified with a maximum likelihood 
detection procedure is described in part 1 [Key and Barry, procedure. 
1989], and is based on the major steps of an International 
Satellite Cloud Climatology Project (ISCCP) test algorithm 
[Rossow et al., 1985]. In the current procedure, surface 
identification with SMMR and SMMR-derived data sets is 

the first step. The algorithm then proceeds through a ined; surface pixels are identified in the cloud detection 
series of steps, each of which is designed to detect some of step. Additionally, texture values are assigned to each 
the clouds present in the scene. Temporal variability at pixel rather than to a grid cell, and classification of pixels 
each pixel location is examined for an initial detection of is performed. Other studies have utilized texture to 
cloudy conditions, and clear-sky composite maps for a 5- identify both surface and cloud classes and have employed 
day period are produced. A multispectral threshold test of statistical classifiers to distinguish between the two [e.g., 
the original data with the clear-sky composites yields a Garand, 1988; Welch et al., 1988; Ebert, 1987]. In super- 
final cloud/no-cloud labeling of the original data. vised classification procedures, training patterns have 

The two methods of cloud pattern analysis are present- often included mixtures of cloud and surface types. 
ed for different purposes: in one case (left side of Figure The bottom two boxes in Figure 6 identify future work 
6), simple measures are used to describe the characteris- in the automated analysis of cloud patterns and their 
tics of clouds which occur in regions with artificially relationships with synoptic variables. As a part of this 
defined boundaries. The size of the regions is consistent goal, the compilation of statistics for cloud fraction, 
with that used by the ISCCP and some climate models. temperature, and number of clouds per grid box is accom- 
The second method is presented as an attempt to elimi- p]ished by the procedure shown in the let• side of the 
nate the problems inherent in analyses that impose figure. However, the comparison of recognizable cloud 
artificial boundaries on cloud and surface patterns, that morphologies (identified through texture analysis shown 
being the mixture of different classes within a single cell. in the right side of the figure) to gridded synoptic data is 
It differs from other analyses that have incorporated the more complex goal and will be the focus of future 
texture analyses in that only the cloudy pixels are exam- research. 
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4.1. Description of Cloud Within Regions 

Mesoscale analysis is performed within regions that are 
(250 km) 2, 50 x 50 pixels, or approximately 2.5 ø latitude 
by 2.5 ø longitude (Figure 2). Cloud properties are 
computed for the cloud-only portion of each region and 
include overall cloud fraction, cloud fraction at three 
levels, and connectivity measures. Low, middle, and high 
cloud amounts were estimated as the percentage of pixels 
of temperature, T, such that 

Low Ts-13 < T _< T s 
Middle Ts-39 < T _< Ts-!3 
High T _< Ts-39 
where T s is the surface temperature estimated by the 
clear-sky composite value in AVHRR channel 4. 

Cloud connectivity features [Garand, 1988] can be 
extracted from a binary image where each pixel is classed 
as either cloudy or clear. Cloud connectivity is smaller for 
highly disconnected elements such as cumulus and larger 
for uniform stratus decks. Cloud pixels connected only 
diagonally belong to a different entity, whereas cloud 
pixels connected above, below, left, or right belong to the 
same cloud entity. In this manner, the number of clouds 
and the number of background areas may be counted. If 
hc(i) and hb(j') are the number of pixels in the cloud entity 
i and the background entity j, respectively, and if we rank 
the clouds and background areas from smallest to largest, 
the cloud connectivity CC is defined as 

cc hJk) / (mAp 
where A c is cloud fraction, m is the number of pixels in 
the image, and k is the cloud number in the ranked list 
such that 

• he( 0 2mA c/ 2 i=l,k 

IfA c = O, CC = 1. Background connectivity is similarly 
defined as 

BC = hb(k') / [m(1-Ac)] A• , I 

Low Cloud Fraction 

Cloud Connectivity 

where k' satisfies 

I] hb(j) • m(1-Ac)[2 j = 1, k' 
Fig.7. Low cloud fraction and cloud connectivity determined for 

IrA c = 1, then BC = 1. Background connectivity is a good each (250 krn) 2 region within the study area shown in Figure 2. 
detector of holes and is low for open cells such as those Cloud connectivity (CC) is smaller for highly disconnected cloud 
associated with convective patterns. elements and larger for connected elements. By definition, CC is 

The proportion of thin cloud within a region was set to 1 if overall cloud fraction within a region is 0. 
estimated from the number of cloud pixels with a large 
difference between channels 3 and 4. On the basis of on Figure 7 for the study area, where regional values of low 
empirical studies with the summer data, and following cloud fraction and cloud connectivity are mapped. 
Saunders [1986] and Olesen and Grassl [1985], if the 

difference between these two channels exceeds 3.5 K, then 4.2. Cloud Classification With Spectral 
the cloud is considered to be thin. This applies to cloud at and Textural Measures 

any height. The second method of examining cloud patterns is to 
Finally, the three-power spectrum measures, streaki- classify each cloud pixel based on its spectral and ]oca• 

ness factor, cell intensity, and maximum ring density textural characteristics. AVHRR channels 1, 3, and 4 are 
wavelength, are useful in describing the structure of used as the spectral features. Textural features include 
clouds. Although in the divergence parameter analysis those given in Table 4 (underlined) and are determined for 
they were less useful in discriminating between cloud each pixel in the following manner. A 16 x 16 pixel cell is 
classes than the grey level difference measures, they are moved across the image shifting two pixels at a time. At 
nonetheless important descriptors and are easier to each location, if the cell contains at least 80% cloud, each 
interpret. Additionally, the methods of feature selection texture measure is computed. The value of texture for the 
were based on "pure" classes, not the mixtures that will cell is assigned to each pixel. With this method, each pixel 
oi•en occur within the artificial boundaries imposed here. may be assigned as many as 162/2=128 values. The mean 

Two of the parameters described above are shown in of these values is the value finally assigned to the pixel. 
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While this method does not eliminate the problem of of pixels classified by each method into each of the classes. 
mixtures of classes within a cell, it does provide a value Overall classification agreement is 68.3% with 10.3% of 
that is generally representative of the texture within the the image left unclassified. The largest differences are 
neighborhood, although when edges between cloud classes due to (1) differences in the location of boundaries between 
are present, the value will be skewed. Figure 8 is an cloud systems, (2)labelingoflowthin cloud over iceas low 
image of the maximum angular second moment GLD thick cloud by the MLC (Kara Sea), (3) the MLC detecting 
measure in AVHRR channel I computed over the study a linear pattern in some middle cloud areas which ap- 
area. Large values (lighter grey shades) indicate smooth peared broken in the manual interpretation, and (4) some 
cloud layers and correspond to both the low and middle low thick cloud areas labeled as middle broken by the 
level cloud decks seen in Figure 2. Similarly, the darker MLC. Additionally, the cumulus complex to the left of 
areas correspond to inhomogeneous grey level pairs, NovayaZemlya (Figures 2and 10)was missed completely 
primarily the mixtures of clouds at all levels in cellular or by the MLC apparently because of a combination of an 
linear patterns. inm•fficient number of training samples and the large 

The maximum likelihood classifier (MLC) [cf., Ebert number of noncloud pixels within the complex which 
1987; Garand, 1988] is employed; the potential problems decreased the number of cells for which texture was 
and alternatives are discussed in the next section. The 12 computed. Table 5 also shows the percent of each training 
cloud classes defined in section 3.2 are used in the c]assifi- area correctly classified by the MLC. These values 
cation. A priori probability for each class is 1.0. The indicate that there is close correspondence between the 
classification results are shown in Figure 9 with cloud information classes and the statistical classes except for 
classes as listed in section 3.2. Only those cloud classes broken middle cloud (class 7) and, to a lesser degree, 
that occurred in the image and were identified by the middle cloud rolls (class 6). From these observations it 
MLC are shown. Comparison of the results with other can be seen that the classification results could be ira- 
classifications is complicated by the subjectivity inherent proved by redefinition of these classes and by choosing 
in defining cloud classes, which are based on those more appropriate training areas. However, given the 
observed in the imagery chosen as a function of both their complexity of the problem of how to define and classify 
textural and spectra] characteristics. Error analysis cloud patterns the areas in which this method performed 
implies that there is a correct classification, which at best poorly are more informative than tuning the classifier to 
is difficult to define. For this reason, the discussion is achieve a high classification accuracy. 
limited to a comparison of Figure 9 with the manual Comparisons of the MLC results to other methods are 
classification shown in Figure 10. Differences are given in also problematic. The question of how this classification 
Table 5, which is a contingency table showing the percent would compare to one utilizing only spectral features, for 
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Fig.8. Texture of the clouds within the study area ss measur.•l by the maximum sng•]lar second moment in 
AVHRR channel 1. The procedure of moving windows and averaging to obtain texture for each pixel was used. 
See text for deraris. Lighter grey shades represent uniform cloud decks. 
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Maximum Likelihood Classification to obtain some indication of the importance of textural 
measures in distinguishing between classes. The question 
of how this classification compares with one that uses 
texture for fixed grid cells is similarly complicated by the 
fact that in the fixed grid method, some of the defined 
classes would include mixtures of cloud types. For exam- 
ple, Ebert [!987] employed many of the same texture 
measures as are used here to classify 32 x 32 pixel grid 
cells in AVHRR polar images. Some of the 18 classes 
included mixtures of surface and cloud types. In that 
study, an MLC classification a]gorithm was optimized by 
an iterative procedure incorporating both manual interpre- 
tations and statistical assessments of class separabi]ity, 
redefining classes when necessary. The initial mode] had 
an accuracy of 55.5% which increased to 84.6% with the 
optimization. Since the focus of this paper is on an 
alternative model rather than the optimization of that 
model, and although simi]ar improvement in accuracy 
could be expected, such a procedure was not employed. 

• • 6 to 4.3. Alternate Methodologies Within this procedural framework of cloud pattern 
ana]ysis starting from a map of cloudy pixels, a number of 
other methods of textural ana]ysis and classification could 

Fig.9. Maximum likelihood classification ofcloudy pixels based on be chosen. This is largely an image-processing problem, 
their spectral and local textural values. Cloud classes are 1, low and as such detailed analyses of the differences of using, 
thin cloud over water; 2, low thin cloud over ice; 4, low thick cloud 
smooth; 6, middle cloud rolls; 7, broken middle cloud, not linear; for example, one classifier over another are beyond the 
10, higWmiddle broken; 12, cumulus. Additionally, clear (bold scope of this paper. Still, it is useful to mention some of 
lines) and unclassified (U) areas are shown. the alternatives which may effect the resulting classifica- 

Manual Classification 

lO 

Fig. 10. Manual classification of the cloud patterns shown in 
Figure 3. Classes are the same as in Figure 9. 

example, is inappropriate because in such a case the c]oud 
classes would have to be defined without a textural 

component. In this study we examine the results of the 
principal components and divergence parameter analyses 

A maximum likelihood procedure is employed for the 
segmentation, although arguments could be made for 
using other procedures, for example, Euclidean distance 
[Ince, 1987] or fuzzy sets [Key et al., 1989] clustering 
algorithms. Since texture and spectra] response are not 
always eqxml]y important in identifying the cloud types, a 
classifier which allows weighting the different sources of 
information for each class would be useful. Such a method 

is proposed by Benediktsson and Swain [1989]. 
Re]ated to the choice of classification method, the 

question of the normality of distributions of features used 
in the MLC is an important one and is addressed in detai] 
by lnce [1987]. When training areas comprise data from 
a large geographic area and/or time period, a single 
informational class (e.g., land albedo)may consist of more 
than one statistical class. This is certainly the case in the 
data set employed here, as a chi-square goodness-of-fit test 
has shown for some of the spectral and textural features 
extracted over a number of images in different locations 
and time. However, in a restricted spatial and temporal 
domain, the normal distribution may provide an adequate 
model. This is the case in the study area of Figure 2, 
where chi-square tests show distributions to be approxi- 
mately normal. 

The objective of the moving texture grid cell is to assign 
the most appropriate texture value to each pixel, one 
which best represents the texture of the cloud class to 
which the pixel belongs. Toward this end, other methods 
of extracting information from the distribution of texture 
values for a given pixel may be more appropriate than the 
mean, for example using the median or mode(s). In some 
cases these would provide more representative values in 
that boundaries between overlapping cloud layers would 
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TABLE 5. Percent of the Study Area (Figure 2, Including Surface Areas) Predicted for 
Each Class by the Maximum Likelihood Classification (Horizontal) Shown in Figure 

9 and the Manual Interpretation (Vertical) Shown in Figure 10. 

Maximum Likelihood Class (MLC) 

Manual I 2 4 6 7 10 % % TA* 
Class Correct Correct 

1 2.96 0.27 0.54 0.01 0.57 0.05 75.5 100.0 

2 0.83 5.05 1.73 0.06 0.04 0.00 92.7 95.7 

4 0.12 0.11 2.70 0.49 1.69 0.01 48.5 99.8 

6 0.00 0.00 0.08 10.04 1.40 0.56 58.3 89.4 

7 0.0! 0.00 0.49 4.82 6.80 0.56 64.2 72.2 
10 0.00 0.00 0.03 1.79 0.09 7.67 86.7 95.4 

Total (MLC) 3.92 5.45 5.57 17.21 10.60 8.85 

See text for class number references. Cloud occupies 51.6% of the image. Also given is the 
percent correctly classified in each class. Total percent correctly classified: 68.3. 
Percent of training areas correctly classified by the MLC. 

be less blurred, but the computational burden would classified by their spectral and textural features following 
increase. Ideally, texture would be computed only for a maximum likelihood procedure. 
homogeneous regions, which of course require texture to This methology differs from others which have incorpo- 
be defined. In some cases it may be appropriate to follow rated cloud texture analyses in two important ways: only 
a region growing procedure based on temperature, for the cloudy pixels are examined (surface pixels are identi- 
example, where cloud patterns are grown out of homoge- fled in the cloud detection step), and texture values are 
neous pixels which are spatially connected [e.g.,Kettig and assigned to each pixel rather than to a grid cell. In this 
Landgrebe, 1976]. The texture of these regions would manner, training classes can be defined on the basis of 
then be determined, and if more than one characteristic texture and do not need to include mixtures of cloud 
texture is found, the region could be split. and/or surface classes. However, the subjectivity inherent 

5. CONCLUSIONS in defining cloud types makes an objective assessment of 
the accuracy of the results difficult. This problem is 

The cloud analysis methodology presented here provides compounded in the test data, where cloud systems are 
an alternative to the traditional method of gridding an complex. With classes defined in part by texture, compari- 
image, computing spectral and textural features for each sons to spectral-only classifications are not appropriate. 
cell, and then classifying the cells. Simulations indicate The test case resulted in 68% of the cloud pixels being 
that in such methods, cells small enough to retain a high correctly classified when compared with a manual inter- 
degree of spatial coherence may be too small to adequately pretation, although no redefinition of classes or training 
measure texture in the AVHRR GAC data set. Our method areas was done to increase this value. 
includes cloud detection on the pixel scale, a descript. ion of Correlation between spectral and textural features and 
cloud patterns on a regional scale, and a classification of the discriminatory capability of each indicates that 
cloud pixels based on spectral and local textural character- spectral features are most useful in discriminating be- 
istics. The cloud detection step involves surface identifica- tween polar surface and cloud classes but that a few 
tion, tests of temporal variability at each pixel location, texture measures, such as angular second moment, vector 
clear-sky compositing over a 5-day period, and a strength, and entropy, as well as standard deviation, 
multispectral threshold test of the original data with the retrieve structural information of clouds. 
clear-sky composites for a final cloud/no-cloud labeling. The classification results indicate that as expected, 

From this point, two methods of cloud pattern analysis cloud fields are organized into recognizable mesoscale 
are presented. In one case, simple measures are used to morphologies. An analysis of cloud morphology may in 
describe cloud types which occur in (250 kin) 2 regions with turn give some indication of the physical state of the 
artificially defined boundaries. Such parameters as cloud atmosphere. A detailed examination of the relationship 
fraction at three levels, cloud connectivity, and Fourier between cloud patterns and synoptic variables requires 
measures of cloud cover structure within the regions are greater spatial coverage than examined here, as well as a 
computed. These descriptors may be useful for applica- procedure to correlate the cloud patterns (derived with the 
tions which require gridded data, for example, in climate procedure presented above) to other meteorological data 
models. The second method is presented as an attempt to sets. The development of such a procedure is the subject 
eliminate the problems inherent in analyses which impose of future research. 
artificial boundaries on cloud and surface patterns, that 
being the mixture of different classes within a single cell. APPENDIX 
Each pixel receives as its texture value the mean value of The concept of grey level difference is used to compute 
all cloudy cells to which it belongs. Cloud pixels are then the grey level texture statistics [Weszka et al., 1976]. The 
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grey level difference g is computed for each pair of pixels The plane normal is calculated as the cross product of two 
in the cell. A histogram ho, d(g) of grey level differences vectors that are known to be on the plane (translated to 
is then constructed for each distance d and angle 0 and is the origin), the most convenient being the two which form 
used to compute various texture measures. Pixels to the the right triangle of the plane. 
right and left of the pixel being examined are at an angle The ratio of R to N where N is the number of plane 
of 0 ø, those above and below are at 90 ø, the upper right normals and 
and lower left are at 45 ø, and the upper let• and lower 
right are at 135 ø. Texture may contain a directional 
component so that the histogram must be specified as a 
function of angle as well as distance. Here, spectral 
values are quantized into 64 equal intervals, based on the 
expected range in each channel (e.g., for channel 4, the 
minimum is approximately 220 K, while the normal 
maximum is 295 K). 

The texture measures calculated from the histograms 
ho,d(g) are the mean, contrast, angular second moment, 
and entropy for the cell. These are defined as 

where H 0 d is the total number of grey level differences 
calculate• for distance d and angle 0. The mean, maxi- 

R = [(1•/) 2 + (l•m•) 2 + (Ilnt)2] '• 
is the vector strength and has a value near unity for a 
smooth surface (e.g., stratus deck) and near zero for an 
uneven surface (e.g., a cumulus cloud). 

Two-dimensional Fourier analysis of spectral data may 
be used to obtain information on the extended structure of 
a cloud field, especially where that structure consists of a 
repeating pattern in either or both dimensions. The 
Fourier transform of the image l•k,l) is 

K-1 L-1 

Q(u,v) = 11KL 1• 1• f(k,l)exp[-2•n (ku/K + iv/L)] 
k--0 I--0 

u -- 0,1 ..... K-l; v- 0,1 ..... L-1 
where K and L are the dimensions of the cell over which 

the transform is computed. The power spectrum intensity 
PS(u,v) is defined as the sum of the squared values of the 
real and imaginary parts of the transform. Three features 
are used to summarize the power spectrum: the streaki- 
ness factor, cell intensity, and the maximum ring density 
wavelength. The streakiness factor SF, which detects 
directional patterns [Garand, 1988], is 

SF = 12 2 uvPS(u,v)111II II u2PS(u,v) l• II v2PS(u,v)] '• 
U¾ U¾ U¾ 

u = 0,1 ..... K- 1; v - 0,1 ..... K- 1; (u,v) , (0,0) 

If the pattern has a north-south or east-west orienta- 
tion, SF=0. To avoid this problem, SF is also evaluated 

mum, and range of these quantities over the four angles with the axes rotated 45 ø, and the maximum SF is re- 
are used in the classification. tained. The cell intensity CI is the proportion of power in 

The area averaged Roberts gradient [e.g. Gonzalez and the spectrum associated with wavelengths between 20 and 
Wintz, 1977] is defined as 40 km and is defined as 

M--d N-d II l• PS( X ) [ II • P$(u,v) 
• I1 [lB(re,n) B(m +d.n +d)l El -- - lt¾ U¾ 

m-1 n=l +lB(m+d,n) - B(m,n+d)l] u = 1,2 ..... K-l; v = 1,2 ..... K-l; 20 a 3. a 40 RG = 

(M-d)(N-d) 3. = Kp/(u2+v•') • 
where d is the separation distance across which RG is where p is the spacing between observations (i.e., 5 km in 
computed. the AVHRR-SMMR data set) and PS(3,) refers to all 

Vector strength considers the cell of pixels as a set of spectral density estimates with wavelengths )• between 20 
adjacent triangular planes rather than a set of density and 40 kin. More cellular patterns have higher CI values. 
points, and texture is then measured through the disper- The maximum ring density wavelength, WAVE, is a scalar 
sion in three-dimensional space of normals (vectors) to the representation of the annular area of the spectrum with 
cell planes. Triangular planes are constructed by connect- the maximum density. The density within a ring with 
ing midpoints of a pixel and two of its neighbors. The radii rl,r2, RDW, is given as 
value of each vertex of the triangle is the value of the 
corresponding pixel. An number of possibilities for 
triangle construction exist; here the right and below 
neighbors are used, as well as the above and left. 

Let (li, rni, n i) be the direction cosines of the ith plane, 
which are calculated from the coordinates of the normal 

vector to the plane (x,y,z) by 

where 

COS 
cos p - y/w 
cos 5 = z/w 

w- (x 2 +y2 +z2)• 

pS(u,v) 
RDW(r•,r2) -- u v 

2 2+¾2 2 r I <u <r 2 

The power spectrum is divided into four rings, each K/4 in 
u,v dimensions, and the wavelength of the center of the 
ring with the maximum density is retained. 
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