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to infer cloud optical properties and surface characteristics; ice 
draft and width distributions of linear openings in sea ice (“leads”) 
have been measured using upward-looking submarine sonar; field 
personnel report the fractional coverage of vegetation types along 
ground transects; and image data are often sampled along lines 
to reduce processing time. All these measurements are, however, 
one dimensional and provide no direct information about the area 
coverage of clouds, sea ice leads, or vegetation classes. In models that 
are two-dimensional in nature the spatial coverage of these parameters 
is of great importance. 

The purpose of this communication is to describe a method of 
estimating the fractional area coverage of geophysical variables from 
measurements made along a line. The basic ideas are taken from 
theorems developed in the field of stochastic geometry but have not 
previously been presented as a general tool for remote sensing and 
geophysical studies. First the general lineal method is presented. With 
this method the underlying spatial structure of the geophysical field 
described by its autocovariance function is employed. Applications to 
cloud and sea ice lead patterns in simulated satellite imagery are then 
presented. In cases where the geophysical field can be adequately 
modeled by a known stochastic process, other methods of estimating 
the areal coverage may be available. One such example is given for 
leads modeled as a Poisson line process. 
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11. GENERAL LINEAL METHOD 
The general expression for the estimate of the fractional area 

coverage, p’. of a geophysical parameter whose actual fractional 
coverage is p ,  regardless of the spatial structure of that parameter is 

where 1(z) is the indicator function for the underlying function q ( z )  
at location z and the factor pLr is needed for normalization and 
depends on the shape of the structuring element I: (e.g., it may be the 
length of a line or the area of a square). The indicator function takes 
on a value of 1 if q ( z )  satisfies some condition and 0 otherwise. For 
example, if a thresholding procedure is used to determine whether 

Estimating the Area Fraction of Geophysical 
Fields from Measurements Along a Transect 

Jeffrey R. Key 

Abstract- Methods are presented for estimating the fractional area 
coverage of geophysical phenomena from measurements taken along a 
transect. These methods are most useful for assessing potential errors in 
sampling strategies but may also be used for the analysis of data. The 
procedure provides a means to compute confidence interval estimates 
of the true area fraction when the autocovariance function for the 
geophysical field i s  known or assumed. Another approach that does not 
require a priori knowledge of the underlying autocovariance function is 
described for the special case of linear featurees modeled as a Poisson 
line process. 

I. INTRODUCTION 
Valuable information about many geophysical phenomena is col- 

lected along lines by aircraft, ships, submarines, and ground per- 
sonnel. For example, airborne LIDAR and radiometer data are used 
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or not each pixel in an image or each data point in submarine sonar 
data represents some phenomenon, then I(z) = 1 if the data value 
passes the threshold test and I(z) = 0 otherwise. Again, this applies 
to any structuring element U. 

Following Stoyan et al. [l] the expected value of p’. E(p’),  is p 
and its variance is 

where kr is the autocovariance function of the indicator function I :  

The displacement or lag r = 112 - yl( is such that the covariance 
depends only on the distance between the two points and not on 
direction. The assumptions are that the geophysical field q ( z )  is 
stationary and isotropic. 

Now we consider the case where the structuring element is a line. 
For measurements along an array of N parallel lines, each of length 
L. the unbiased element of the fractional area coverage is 

I 1  p = -  
N L 
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(a) (b) (c) 
Fig. 1. (a) Binary image based on a Landsat MSS band 4 scene of the ice pack north of Alaska in March 1988. Field-of-view is 80 m; area covered is 
approximately (24 !an)’. (b) A simulated lead network modeled as a Poisson line process with thick lines. Field-of-view is 137.5 m; image size is approximately 
(42 km)‘. (c) A simulated cloud field based on a random disk model. Field-of-view is 137.5 m; image size is approximately (42 km)’. 

TABLE I where 1 IS the total length of -VL where I(zj  = 1. Extending the 
work of Rothrock and Thorndike [2], the estimation variance is REGRESSION-ESTIMATFD PARAMETERS OF I HE AUTOCOVARIANCF 

FUNCTION FOR THE IMAGES I N  FIG 1 

var(p’ ) = N-’ L-’ I 1 k / ( ( J  - YljdJdy 

= ~ s - J L - ’  L ( L  - r)ki(r)dr 
( 2 4  

(2b) 

. c  c 

Figure P( 1 -PS a R 

where C is the set containing the S lines and I’ = 1.1 - yl. the distance 

Exponential covariance is a reasonable model for many geophysical 
between two locations s and y on the line. l a  0 029 0 319 -0 99 

Ib 0 078 0 554 -0 96 

IC 0 218 0 121 -0 92 
parameters and is used here: 

kr(r) = p ( l  - p ) ( C n 7  ( r . 0  2 0 )  (3)  

where a describes the dependence of the covariance on the distance 
r .  The parameter n can be determined from observed autocovariances 
by rewriting (3) in linear form as 

ln [k [ ( r ) )  = I n b ( I  - p j j  - nr (4) 

and estimating a from the data through a least squares regression. 

(2 )  is 
In the case of exponential covariance the estimation variance in 

2 p ( l - - p j  1 - - 

n -1- L 
N ( 
N 

111. APPLICATION 

One real and two simulated images are used in the application of 
the above methods. The real image is a Landsat Multispectral Scanner 
(MSS) band 4 (0.54.6 pm) scene of the Beaufort Sea, March 1988. 
The binary image produced by applying a threshold to the original 
grey-scale image is shown in Fig. l(a). The pixel size is 80 m; image 
size is 24 x 24 km, a subset of a full Landsat scene. Next, a network 
of leads is simulated as a Poisson line process. The mean spacing 
between lines (leads) is 3000 m and their orientations are random. 
The lines are assigned thicknesses (widths) following the negative 
exponential density function: 

where u’ is lead width and X is the mean width. For the simulation 
X = 200 m. One realization of the Poisson line process is shown 

‘Estimated with (4) 

in Fig. l(b), again as a binary image, where the pixel size is 137.5 
m. Last, a cloud field is simulated as an ensemble of disks whose 
diameters are approximately normally distributed (in a true Gaussian 
distribution negative diameters would be possible) and whose center 
locations follow a binomial point process. This model is appropriate 
for cumuliform clouds but is obviously not applicable to stratiform 
cloud decks. One realization is shown in Fig. l(c). 

As stated earlier, the expected value of p‘ is p ;  i.e., the mean of 
the sampling distribution of sample proportions is the same as the 
population or true mean. The variance of the sample proportions is 
given by (2) in the general case and ( 5 )  for exponential covariance. 
How well does this theory compare to observations? As the first 
step, the “true” autocovariance functions were estimated from six 
random, horizontal transects through each image. The a coefficient 
in (4) was computed for each of the six transects and then averaged. 
With the simulated clouds and leads the horizontal transects should 
adequately represent the two-dimensional structure since the patterns 
are isotropic. This is less true, however, with the Landsat image where 
a preferred orientation is apparent. Table I gives the results of the least 
squares fit  of the exponential autocovariance function to the observed 
autocovariances in the images. Listed are the regression-estimated 
variance (the antilog of the y-intercept in (4)), n. and the correlation 
coefficient. Next the distributions of sample fractional area estimates 
and their first two moments (mean and variance) were determined 
by computing p’ with ( 1 )  for each of 500 single, random, horizontal 
transects through each image (i.e., the number of transects used to 
calculate 11’ in (l), -1.. is 1 for each of SO0 samples). Distributions of 
p‘ were also computed for sets of ten such parallel transects giving 



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 31, NO. 5. SEPTEMBER 1993 

- l x r x l t m m r n  - 0.351. . . . . I - . . .  . I . ' I ' ' ' ' J 

..... 1 O x 5 o O ~ l ~  1 
0.30 

. .  . .  . .  . .  - . .  , .... . .  . .  

. I  
- I  . . .  .... . 

- p 025 

; 0.20 

r 
- 

Y -  

.g 0.15: 7 - 
3 :  

- 
... - 

... -I . . I . . . .  I 

1101 

- lxmlrarmcb 
0.40 -.... l O x s o D t m * c h  

p 0.30 

P 
3 0.20 : ' - - :  ... 
2 

0 _.. . .  
, I  . .  

fa --.I - 
:.. 

m .  
0 0.05 0.10 0.15 0.20 

Area Fiaclbn 

(a) 

Area Fraclbn 

(b) 

0.12 
O ' I 4  t 

P 0.08 

$ 0.06 

0.04 

0.00 o . 0 2 0 m  0.1 

J 

. .  - i x r x l  tmnrsb ..... lOXtQ0 Lmacb . .  .. 
:: :: . .... . .. * .: * 

( 4  
Fig. 2. Relative frequency histograms of the distribution of estimated area 
fraction for different total line lengths. Plots correspond to the images in Figs. 
(aHc). (a) Frequency of area fraction Landsat. (b) Frequency of area fraction 
simulated leads. (c) Frequency of area fraction simulated clouds. 

5000 transects (AJ = 10 for each of 500 samples). Fig. 2 shows how 
the distribution of the estimates changes as a function of the number 
of transects or, effectively, total transect length. For single transects 
(solid lines) a broad range of p' are possible. 

Table I1 gives the true area fraction p ,  the means and variances 
of the estimated area fraction p' from the observed distributions in 
Fig. 2, and the variance computed from (5b), where L = 304 pixels 
(same units as T in (4)). The true area fraction is the proportion of 
pixels in the binary image where I ( z )  = 1. It is apparent that the 
theoretical variance of the estimate given in (5) is generally applicable 
for the simulated leads and clouds in Figs. l(b) and (c). For the 
Landsat data, however, the variance of the estimate for the 500-set 
simulation is three times as large as that computed with (5) or a 
factor of 1.7 for the standard deviation. This is due to the anisotropic 
nature of the lead network in the image and the large variability 
in the autocovariance function computed for individual transects. A 

TABLE I1 
ACTUAL AND ESTIMATED FRACTIONAL AREA COVERAGES 

FOR FIGS. l (aHc)  USING ONE AND TEN TRANSECTS 

la 0.035 0.035 2.07e-3 0.036 2.35e-l 

(6.84e-4)' (6.84e-5) 

lb 0.067 0.067 7.5- 0.067 7.62e-5 

(7.38e-4) (7.38e-5) 

I C  0.215 0.218 7.2%-3 0.214 7.78e-4 

(8.93e-3) (8.93e-4) 

'Values in parentheses are computed with (5b). 

two-dimensional autocovariance function and a modification of ( 5 )  
may be needed in such cases. 

The fact that the distributions of area fraction estimates tends 
toward Gaussian as W increases suggests a method for hypothesis 
testing and confidence interval estimates. If a normal distribution 
is assumed to apply, then the probability that a particular area 
fraction estimate comes from a population with area fraction p can 
be determined. This is perhaps most useful for confidence interval 
estimates of the true area fraction, defined as 

p' - r ( ;? /2 ) sd (p ' )  t o  p' + z(d/2)sd(p') 

where sd(p') = [var(p')I1/* is the standard deviation (sd) of p' and 
1 - p is the level of confidence. Since the variance depends on an 
unknown p ,  p' is used as an estimate in (5).  As an example, suppose 
that for Fig. l(b) samples of one and ten transects are taken and for 
both p' = 0.05. Assuming the autocovariance structure given in Table 
I and computing the variance of the estimate with (5b) the confidence 
interval estimate of the true area fraction at the 90% confidence 
level is [0.011, 0.0891 for a single transect and [0.038, 0.0621 for 
a sample of ten transects. Neither of these intervals contains the true 
area fraction p = 0.067. Of course, the probability of obtaining such 
a p' from a population with a true fraction of 0.067 is very small, 
particularly for the set of ten transects (0.01 as opposed to 0.24 for 
a single transect), so that this example is improbable but useful for 
illustration. If, on the other hand, we obtain a sample p' of 0.07 then 
the confidence interval estimate of p is [0.024, 0.1161 for a single 
sample transect and [0.056, 0.0841 for a set of ten. Both contain the 
true area fraction but the larger sample size gives a much smaller 
range for the estimate. 

The shortcoming of this approach is that the autocovariance 
function must be known. It may be possible to estimate it from 
the data itself if the sample size is large enough, although this is 
somewhat circular. In some cases it may be possible to infer a 
covariance structure by assuming a simple model of the geophysical 
variable, as done in [2] for sea ice floes. Even so, some knowledge of 
the field is needed; in their case the diameter of the floes. If, however, 
some basic autocovariance can be assumed for different cloud types, 
sea ice leads, etc., then the above procedure is certainly useful for 
planning sampling studies, and probably applicable to data analysis 
as well. 
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IV. SPECIAL CASE: POISSON PROCEDURES 

For certain stochastic processes it is possible to determine the 
fractional area coverage from measurements along a line without any 
apriori knowledge of the process. Here such a possibility is given for 
a Poisson line process like the one used above as a model of leads. 

For a Poisson process the area fraction is related to the intensity’ 
T of the process and the mean “area” of the objects <: 

(6) p’ = Pr[O is covered] = 1 - r-r‘ 

where 0 is an arbitrary origin. The area measure corresponds in units 
to the intensity measure; e.g., for leads the intensity is the number of 
points per unit distance and < is mean lead width. 

The area fraction can be now estimated from lineal measurements 
through the use of the line (lead) thickness (width) distribution. The 
area term in (6) is the overall mean line thickness, T I - .  defined as 

1.I- = n-’ lT t r , (B ) r lH  

where w ( H )  is the mean thickness of lines with orientation H (0 5 H 5 
A )  [4]. This applies to lines oriented isotropically; Le., with a uniform 
distribution such that fe(B) = A - ’  where fo is the probability 
density function for line (lead) orientations. For anisotropic thick 
lines then 

IT- = 1= w(H)dFe(H) 

where d F o ( 8 )  = f e ( H ) d H ,  and FO is the cumulative distribu- 
tion function for orientations. A method for determining the actual 
lead width distribution, and hence from the width distribution 
measured along a transect has been presented in [3].  

As an example of the use of (6), the lead network in Fig. l (b)  was 
generated with T = 1/3 (3-km mean spacing) and \I- = 0.2 km. 
This gives a p‘ estimate using (6) of 0.064 compared to the value 
of 0.067 reported in Table 11. The discrepency is a function of the 
image creation and thresholding process, where all leads must fill an 
entire pixel. 

In practice the intensity of the process is not known. For leads 
modeled as a Poisson line process an estimate of r can be obtained 
from the transect data, where the points of intersection of the transect 
with leads constitute a Poisson process of intensity 2 r / n .  The 
accuracy of this estimate depends on the size of the region over which 
the measurements are made. For Fig. l(b) estimates of T range from 
0.19 to upwards of 0.45 which results in an estimate of p’ in the 
range of 0.037 to 0.086. There is, of course, some variability in the 
estimate of \.I‘ as well, which is discussed in [3].  

V. SUMMARY 

A general method has been presented that allows for the assessment 
of potential errors in estimating the fractional coverage of geophysical 
variables from measurements along a line. Potential applications 
include the analysis of field data from aircraft, ships, and submarines 
as well as data collected on along ground transect by field personnel. 
For image processing the primary use of transect measurements is 
in the sampling of very large data sets. By application to fields of 
clouds and sea ice fractures it was shown how the variance of the 
estimate of area fraction depends on the spatial structure and the 

’The intensiry of a stochastic process is commonly called the density of the 
process. The former term is used here in order to avoid confusion with the 
concept of probability density. 

number and length of transects in the sample. With a single, short 
transect the estimated fractional coverage has a large variance. With 
large samples the sampling distribution of sample proportions tends 
towards normal with a mean equal to the population or true mean, so 
that confidence interval estimates and hypothesis tests are possible. 

The shortcoming of the approach is that the autocovariance func- 
tion must be known. If, however, it is assumed that some basic 
autocovariance structure exists for different cloud types, sea ice leads, 
etc., possibly as a function of the time of year and/or geographic 
location, the general lineal method is a useful tool. Even if such 
a priori knowledge of the geophysical field is not available, the 
method allows for the assessment of sampling errors and the design 
of sampling strategies in a general sense. In cases where the spatial 
structure of a geophysical variable can be described by a particular 
stochastic process such as a Poisson process, other methods of 
estimating the area coverage may be available. 
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LA1 Inversion Using a Back-Propagation Neural 
Network Trained with a Multiple Scattering Model 

James A. Smith 

Abstract- Standard regression methods applied to canopies within 
a single homogeneous soil type yield good results for estimating leaf 
area index (MI) hut perform unacceptably when applied across soil 
boundaries. In contrast, the neural network reported here generally 
yielded absolute percentage errors of < 30%. The network was applied, 
without retraining, to a Landsat TM. 

I. ~NTRODUCTION 

Current and projected satellite sensor systems, e.g., the Moderate 
Resolution Imaging Spectrometer (MODIS) [I], are able to obtain 
global and repetitive observations at high temporal sampling rates 
and many studies have demonstrated the utility of vegetation indices 
at continental scales for estimating photosynthetic processes and leaf 
area index (LAI) in plant communities [ 2 ] .  Others, however, have 
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