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The Effects of Sensor Field-of-View on the
Geometrical Characteristics of Sea Ice Leads
and Implications for Large-Area

Heat Flux Estimates

J. Key,” J. A. Maslanik,” and E. Ellefsen’

The release of heat from sea ice fractures (‘leads”) is
an important component of the heat budget in the Arctic,
but their impact on regional scale climate is difficult to
assess without more information on their distribution in
both space and time. Remote sensing of leads using satel-
lite data, specifically AVHRR thermal and Landsat visi-
ble-band imagery, is examined empirically with respect
to lead width, orientation, and area fraction. The geomet-
rical aspects of the sensor are simulated so that the effect
of sensor field-of-view on retrieved lead width statistics
can be assessed. This is done using Landsat data and
simulated lead networks degraded to AVHRR pixel sizes.
The analyses illustrate how leads of sufficiently high con-
trast tend to “grow” with increasing pixel size and how
small or low contrast leads disappear. The relationship
between lead contrast and the width /field-of-view ratio
is also examined in order to determine the limits of lead
detectability, and illustrates the multivalued nature of
the problem of lead width retrieval. To help quantify the
importance of changes in lead statistics, turbulent heat
flux is calculated as a function of lead width and lead
fraction. It is shown that pixel size has a substantial effect
on estimates of turbulent heat transfer from leads to the
atmosphere.

INTRODUCTION

Fractures in the sea ice pack (“leads”), either open or
refrozen, are an important component of local scale
heat exchange in the Arctic, providing a significant
source of heat and moisture to the atmosphere that is
as much as 2 orders of magnitude greater than turbulent

*Cooperative Institute for Research in Environmental Sciences,
Division of Cryospheric and Polar Processes, University of Colorado,
Boulder

Address correspondence to Jeffrey R. Key, CIRES, Univ. of
Colorado, Campus Box 449, Boulder, CO 80309-0449.
Received 30 September 1992; revised 8 January 1994.

0034-4257/94/ $7.00
©Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010

energy exchange from thick sea ice (Maykut, 1978).
Lead coverage also affects the ice-pack albedo and, in
turn, the rate of ice melt through the absorption of
heat within the open-water leads (Maykut and Perovich,
1987). Modeling studies of the influence of sea ice
leads on climate point out the importance of accurately
representing lead fraction, which typically defines the
proportion of open water within the interior pack ice
(Ledley, 1988; Simmonds and Budd, 1990). Relatively
large changes in lead coverage can be related to strong
storms in the Arctic (Maslanik and Barry, 1989) and can
contribute as a positive feedback to maintaining the
strength of these storms (Ledrew et al., 1992). In addi-
tion to total lead-covered area, the widths of individual
leads affects the rate of heat transfer from the ocean
to the atmosphere (e.g., Andreas and Murphy, 1986).
Unfortunately, relatively little information is available
on the numbers, dimensions, and life cycle of leads in
the Arctic ice pack. Remote sensing—in particular, the
use of medium-resolution imagery from polar orbiters
such as the NOAA Advanced Very High Resolution
Radiometer (AVHRR)—offers the potential to develop
a climatology of lead statistics that is well suited for
climate studies and comparison to other remotely
sensed data such as microwave imagery. However, be-
fore a consistent and accurate record of lead statistics
can be obtained, it is necessary to understand how
sensor characteristics, atmospheric properties, and sur-
face conditions influence the detection and interpreta-
tion of sea ice leads in AVHRR and other satellite data.

The objectives of this work are to begin to define
the sources and magnitudes of errors in retrieved lead
statistics as a function of the spatial resolutions of ex-
isting and future sensors, and to assess the importance
of these errors in a physical context. Specifically, we
seek to determine the extent to which sensor field-of-
view affects observations of lead geometries, and how
this translates into changes in the exchange of sensible
and latent heat from the ocean to the atmosphere. For
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example, since the temperature contrast between open
water and ice provides a means to map leads using
thermal imagery, to what degree does this contrast affect
the apparent width of a lead and our ability to detect
leads and to accurately map their widths and areal
coverage? Since the exchange of energy between the
ocean and atmosphere is affected by all openings in the
ice pack and not just those visible at certain scales, we
need to know how well observations taken at different
scales represent actual conditions. To address these
questions, we compare lead statistics retrieved from
satellite imagery of varying spatial resolution, and we
examine whether lead statistics derived from “medium”
resolution imagery (e.g., a field-of-view of 500-1000 m)
can be used to estimate characteristics of lead distribu-
tions that would be obtained from higher-resolution
images with a field-of-view of about 80 m. While the
emphasis is on lead width—defined as the distance
across a lead along a line perpendicular to the local
orientation of the lead —, lead orientation, and fractional
coverage are also examined. The effects of atmospheric
effects on the retrieval of lead geometries is examined
elsewhere (Stone and Key, 1993).

Other studies of the effect of sensor field-of-view
(FOV) on parameter retrieval have appeared in the
literature, including several that have addressed the
effects on cloud amount and landcover mapping. Shenk
and Salomonson (1972) and Wielicki and Welch (1986)
studied cloud fraction where real and synthetic data
containing cloud fields were degraded in resolution, and
the fractional coverage was observed as a function of
scale. In their investigation of the effect of FOV on
landcover classification, Townshend and Justice (1988)
and Woodcock and Strahler (1987) examined the image
data variance as a function of measurement scale to
determine the optimal resolution for monitoring pur-
poses. Unfortunately, the results of those studies are
difficult to generalize to other mapping requirements
and image types. Here we present initial results toward
quantifying these relationships for leads.

METHODS AND DATA

One way to investigate the effects of sensor field-of-view
on retrieved lead statistics is to examine data from
existing sensors of various spatial resolutions. For exam-
ple, Figure 1 shows colocated data from the Landsat
Multi-Spectral Scanner (MSS) (visible band), AVHRR
(thermal band), and aircraft passive microwave imagery
from the U.S. Navy K-band Radiometric Mapping Sys-
tem (KRMS) (33.6 Ghz, vertical polarization), for a por-
tion of the Beaufort Sea in the western Arctic Ocean.
Leads appear as the darker linear features within the
surrounding ice pack, and are differentiated based on
their lower albedo and higher physical and microwave
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Figure 1. Colocated Landsat, AVHRR, and KRMS imagery
of sea ice leads in the Beaufort Sea.

brightness temperatures than the thicker sea ice. While
the same general lead structure is apparent in the im-
ages, the smaller leads are obviously harder to detect in
the AVHRR image (nadir FOV of 1.1 km) than both the
Landsat image (80 m FOV) and the KRMS data (26 m
FOV at flight altitude of 1500 m). In addition to the
differences in spatial resolution, each sensor is sampling
different spectral characteristics. For example, relatively
thin ice forming within leads exhibits a low albedo and
relatively high physical temperature, but the microwave
brightness temperature differs dramatically from that of
open water. In this example, the problems inherent in
comparing lead statistics using imagery of different spa-
tial resolutions and spectral characteristics is apparent:
application of thresholds to the three data types yields
1.1% lead-covered area in the Landsat image, 12.8%
in the AVHRR (which includes apparent low cloud with
substantially warmer temperatures than the ice surface),
and 5.4% lead-covered area in the KRMS image. De-
pending on which image type is used, these lead-fraction
estimates would yield roughly an order of magnitude
difference in the estimate of turbulent heat transported
into the atmosphere from the warmer ocean.

While there are advantages to comparing lead statis-
tics derived from different types of imagery, such a
study is complicated by different acquisition times, spec-
tral bands of the various sensors, and geolocation prob-
lems. To alleviate these sources of uncertainty, we
choose to work with images of a single data type that
are successively degraded in resolution by modeling the
transfer function between the initial data and the desired
resolution and then sub-sampling. A spatial filter that
estimates the point spread function of the Landsat sen-
sor is applied following the methodology presented in
Justice et al. (1989). At each degradation cycle, Gaussian




Figure 2. Landsat MSS Band 4 scene of the ice pack north
of Alaska in March 1988. Area covered in the images is ap-
proximately 80 km?. The degraded images have pixel sizes
of 80 m (upper left), 160 m (upper right), 320 m (lower
left), and 640 m (lower right).

random noise is added back into the image to reduce
the smoothing effects of the filtering operation.

We start with Landsat MSS Band 4 (0.5-0.6 um)
scenes of the Beaufort Sea, March 1988, with an initial
FOV of 80 m (Fig. 2). The fourth-order trend surface
is removed from the original grey scale image (Eppler
and Full, 1992) in order to correct for brightness varia-
tions caused by typically low sun angles in the Arctic.
Images with FOVs of 160 m, 320 m, 640 m, and 1280
m are then created using the spatial filter. Each degrada-
tion is segmented using a threshold based on the Sobel
operator edge detector. This procedure determines the
discrete spatial gradient at each pixel in both dimen-
sions. When its histogram is compared with that of the
original image, the point of intersection determines an
adequate cutoff between a lead and the ice. We note
that the lead / not-lead decision is somewhat subjective;
linear features from older, refrozen leads, for example,
may or may not be included as leads. To differentiate
between leads and other low-albedo features such as
shadows and isolated open-water areas, valid lead frag-
ments are identified using tests based on width and
orientation. Linearity is determined through correla-
tion / regression analysis of pixels within the candidate
features. Lead widths are measured perpendicular to
the regression line, at 1-km intervals, and the slope
of the regression line is the measure of the feature
orientation.

In addition to the series of degraded-resolution
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Landsat images, “synthetic” images are generated as an
additional tool to study the effects of spatial resolution
on observed lead characteristics. These synthetic images
represent lead networks as recorded in a thermal chan-
nel; for example, leads and the surrounding ice are
assigned different physical temperatures. The reason for
using simulated leads is that their geometrical character-
istics are completely known. Lead networks are simu-
lated as a Poisson line process, where the mean spacing
of lines (leads) is 2500 m and the orientations are
random. The lines are assigned thicknesses (widths)
following the negative exponential density function:

__]_j —wid
i) = e

where w is lead width and A is the mean width. For
the simulations, A =200 m based on lead observations
derived from submarine sonar data (e.g., Key and Peck-
ham, 1991). For this stage of the study, leads can consist
of either open water or thin ice within the surrounding
matrix of thick ice. Three ice thicknesses are used: 0
(open water), 5, and 15 cm; the surrounding thick ice
has a thickness of 2 m. Corresponding temperatures are
271 K, 256 K, 248 K, and 235 K. In the simulation,
ice thicknesses within leads are assigned probabilities
consistent with ice thickness distributions reported by
Maykut (1982). One realization of the Poisson line pro-
cess is shown in Figure 3. The initial pixel size is

Figure 3. One realization of a lead network simulated by a
Poisson line process with thick lines. Pixels sizes are 137.5
m (upper left), 275 m (upper right), 550 m (lower left), and
1100 m (lower right). Grey-scale values represent brightness
temperatures.
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137.5 m, assigned so that the pixel size after the third
degradation is 1.1 km, the nominal FOV of the AVHRR

sensor at nadir.

OBSERVED CHANGES IN LEAD GEOMETRIES
WITH FIELD-OF-VIEW

In this section the geometrical characteristics of leads
in the degraded images are described. Results are, of
course, specific to the Landsat and simulated images
that were analyzed. A discussion of the implications for
using lead information extracted from sensors of differ-
ent field-of-views for heat flux estimates and other appli-
cations is deferred until the next section.

The distribution of lead widths corresponding to
the images in Figure 2 (degraded-resolution Landsat
imagery) is shown in Figure 4. The disappearance of
small leads due to reduction in contrast and the apparent
increase in the relative frequency of large leads as pixel
size increases can readily be seen. In this particular
Landsat sample, we find that leads narrower than ap-
proximately 250 m disappear as the resolution of the
Landsat image is degraded to 320 m and 640 m. How-
ever, the criteria for how a given lead will “grow” in
width or disappear during image degradation depends
on contrast in reflectance of the lead compared to that
of the surrounding ice. For example, a narrow, open-
water lead might increase in apparent width while de-
creasing in contrast as pixel size increases during the

Figure 4. Lead width distributions for the Landsat image se-
ries in Figure 2. Widths are grouped in 100-m bins.
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first degradation. However, in the subsequent degrada-
tion, the lead may “disappear” as the average of the
subresolution lead and the surrounding ice raises the
pixel reflectance above a given threshold. A narrow
refrozen lead, in comparison, might disappear during
the first degradation since the brightness contrast be-
tween the thin ice in the lead (rather than open water
in the previous case) and the surrounding ice is initially
smaller.

Orientations of leads can also be expected to change
if the orientations are anisotropic (i.e., have a preferred
orientation). An illustration of this is shown in Figure 5
for the Landsat image in Figure 2. Results from other
Landsat scenes show similar patterns and are therefore
not shown. Lead widths and orientations from the simu-
lated lead networks (e.g., Fig. 3) exhibit similar depen-
dencies on pixel size, although orientations do not
change substantially as with the real data since the basic
pattern is isotropic.

Figure 6 shows the change in mean lead width as
a function of field-of-view for six Landsat images. We
find that while the manner in which widths of individual
leads changes is highly variable, the mean lead width,
averaged over the entire image, seems to change in a
more predictable way. This is a potentially important
property since “true” mean lead widths might then be
predicted based on measurements from a lower-resolu-
tion sensor.

Figure 5. Lead orientations for the degraded Landsat series
shown in Figure 2. Orientation is the angle that a lead
makes with the horizontal axis, measured counterclockwise.
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Figure 6. Change in mean lead width as a function of
field-of-view for six Landsat images.

The change in total lead areal coverage as a function
of field-of-view is illustrated in Figure 7 for the six
Landsat images. The change in area fraction with in-
creasing pixel size is generally exponential. The actual
rate of change is, however, sensitive to the threshold
levels used. In fact, it can be shown that lead area
fraction may either increase or decrease with increasing
pixel size depending on the threshold used. The theoret-
ical reasons for this are discussed in a later section.
However, when the same thresholding method is used,
the lead fraction difference between degradation cycles
varies in a predictable way. In other words, though
the definition of a “lead” in the original image is still
subjective, once defined it remains consistent through-
out the range of degradations.

CONTRAST EFFECTS AND THRESHOLD
SELECTION

The reason for the change in lead geometrical character-
istics with sensor resolution is now examined in terms
of contrast. We define the normalized contrast as a ratio
based on the target and background temperatures, T
and T;:

T,— T,

T,
Of course, the contrast ratio need not be defined in
terms of temperature, so that T; and T; could also be

reflectance or digital number (DN). Letting p be the
fractional area coverage of a lead in a pixel; for example,
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Figure 7. Change in total lead fractional area as a function
of field-of-view for six Landsat images.

width /FOV, then the total contrast, which takes into
account the reduction in temperature contrast as a
function of pixel size, is

o Tt (L-p)TI-T,
tot = T

=pC.

The change in total contrast can be seen in Figure
2, and is shown in more detail in Figure 8, where four
individual leads, each with a different initial contrast,
are placed in an image context. The lead at the top of
the figure has the lowest initial contrast. The images
are degraded as described previously, with noise added
initially and at each degradation. The change in the
total contrast of each lead from one degradation to the
next is shown in Figure 9.

If every pixel in the image is to be labeled as either
a lead pixel or not a lead pixel, then some thresholding
operation must be used. One possible method is to
choose as a threshold the background temperature plus
some multiple of its variability o, say T,+20. This
threshold can also be expressed as a unitless contrast
ratio:

yp=20/T;.

If the total contrast of a pixel is below this value, then
the pixel is not a lead pixel. This threshold contrast
includes implicitly the effect of the fractional area cover-
age of a lead within the pixel. It can be used to deter-
mine the minimum initial contrast, or critical contrast,
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Degradation 1

Lead

Figure 8. Four single-lead images of varying initial contrast (not shown) degraded three times.
Initial lead width is one pixel. Gaussian noise is added after each degradation.

necessary for a lead of a given width in a pixel of a
given size to be detectable:

C* = C¥/p,
where the asterisk represents a critical (cutoff) value
and C¥ =7y.

Figure 10 shows total contrast as a function of the
initial contrast and the width /FOV ratio of leads, that

is, the combinations of the later two variables that give
rise to a specific total contrast. For example, an initial
contrast of 0.15 and a p (width/ FOV) of 0.15 yields the
same total contrast (0.02) as an initial contrast of 0.05
and a p of 0.4. The total contrast can also be considered
as the threshold contrast in that any point below a
contour chosen as the threshold contrast represents
a lead that is not detectable. For example, given a
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Figure 9. Total contrast as a function of field-of-view for
the four leads in Figure 8.

background ice temperature of 240 K with a standard
deviation of 5 K, the threshold contrast as defined above
is 0.042. If there exists a lead that is 500 m wide passing
through a 1 km pixel (so p = 0.5), then its initial contrast
must be at least 0.084 (which is its critical contrast) for
it to be detected. Given a background temperature
of 240 K, this critical contrast translates into a lead
temperature of 260.2 K.

EFFECTS OF CHANGES IN FIELD-OF-VIEW ON
TURBULENT HEAT FLUX

In the previous sections, we showed how sensor field-
of-view aflects observed lead statistics. In order to better
assess the importance of these effects, we placed them
in the context of changes in turbulent heat flux from
the ocean to the atmosphere.

Changes in both the mean lead width and lead-
covered area are considered in the calculation of sensi-
ble and latent heat flux as a function of fetch (treated
here as the lead width), surface temperature, air temper-
ature, and wind speed using the procedure outlined by
Andreas and Murphy (1986). In this approach, a bulk
Richardson number defines atmospheric stability that
controls convective turbulence based on temperature
and wind speed. Convective turbulence combines with
the mechanical mixing introduced by the step effect of
an air mass in equilibrium with thick sea-ice conditions
travelling over the physically rough edge of a lead and
the considerably warmer open water or thin ice in the
lead. The addition of mechanical turbulence introduced
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Figure 10. Total contrast as a function of the initial contrast
and the width / FOV ratio of leads; that is, the combinations
of the later two variables that give rise to a specific total
contrast. The total contrast can also be treated as the thresh-
old contrast in that any point below a contour chosen as the
threshold contrast represents a lead that is not detectable.

by the ice-lead boundary tends to result in a higher rate
of heat transfer from smaller leads compared to larger
leads. Thus, for a given areal coverage of leads in an
image, a greater number of smaller leads will result in
more heat loss to the atmosphere than from a lesser
number of larger leads, even though the total amount
of open water in the image remains the same. Under
the conditions examined by Andreas and Murphy (1986),
this decrease in flux as lead width increases becomes
negligible for lead widths greater than about 200 m.
To illustrate the effects of changes in lead statistics
using different image fields-of-view, we calculate sensi-
ble and latent heat flux using the above approach for the
data presented in Figure 6 and the associated changes in
lead areal coverage in Figure 7. An open-water tempera-
ture of — 1.8°C, wind speed of 5 m s~%, air temperatures
of —28.9°C at a reference height of 2 m, ocean salinity
of 34 ppt, air pressure of 1000 mb, and a neutral-stability
drag coeflicient of 1.49x 1073 are used to represent
typical mid-winter (January) conditions over the Arctic
sea ice pack (Maykut, 1978; Andreas and Murphy, 1986).
Although leads are often covered by thin ice rather than
open water and thus have a lower surface temperature
than open water, the assumption tl at the leads are not
refrozen and have a surface tempes ature of —1.8°C is
a useful baseline for our calculations. Turbulent (sensi-
ble plus latent) heat flux from leads is calculated using
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Table 1. Areally Averaged Turbulent (Sensible + Latent) Flux (W m™?)
for Typical January Conditions as a Function of Field-of-View (FOV)

for Six MSS Images®

Image
FOV (m) A B C D E F
80 23.5 19.1 174 50.7 10.6 15.0
160 22.2 17.7 14.4 47.0 9.7 12.1
320 19.9 16.1 11.7 41.6 8.2 8.9
640 16.7 14.0 7.9 33.7 5.6 5.3
% Change 29 27 55 34 47 65

* The percent change in the flux between FOVs of 80 m and 640 m is also shown.

the mean lead width at each field-of-view and then
weighted by the areal coverage of leads for the six MSS
images used in Figures 6 and 7 to yield an areally
averaged heat flux. Turbulent fluxes from open-water
leads under these conditions are around 300 W m~=2
compared to a flux of nearly 0 W m~? from surounding
ice taken to be 3 m thick. Thus, lead fraction and lead
width dominate the transfer of turbulent heat through
the ice pack during winter. Table 1 shows these areal
averages for the six MSS images. Since the effect of
increasing the fields-of-view in these examples is to
decrease the apparent lead fraction, areally averaged
fluxes decrease as field-of-view increases. However, as
noted earlier, the choice of thresholds can affect both
the magnitude and direction of change in lead statistics
with changing FOV. If we assume that the lead widths
and lead fractions measured using the 80-m FOV imag-
ery are closest to reality, then the errors introduced by
using lead widths and lead fraction measured at a 640
m FOV are substantial —averaging 45% over the six
images. Since the change in turbulent heat transfer with
changing lead width is greatest for smaller leads, those
images with smallest mean lead widths at the 80 m
FOV (such as images C and F) are most affected. In
the images studied here, where the mean lead width is
fairly large, the effect of errors in lead fraction is about
five times that of the effect of uncertainty in lead width.

TRANSLATION BETWEEN SCALES

From the previous discussions it is obvious that lead
statistics change significantly as a function of field-of-
view and that there are important implications of these
changes for large-area turbulent heat flux estimates. Is
there any possibility of estimating the true lead widths
and area fractions from those observed in lower-resolu-
tion imagery?

Width Distributions

Given that very small features will generally not be
resolved, the issue then becomes one concerning the
possibility of using the distribution of lead widths mea-

sured at low resolution to estimate the complete or
“true” distribution. For example, assume that lead
widths x follow a negative exponential distribution with
an unknown mean 4. From a sampling point of view, it
is useful to treat the distribution of widths as discrete
and address the number n; of leads in bin i that have
widths between x; and x; + w:

Nw _ .
n; =——e %4 1
; ®

where w is the width of the bin and N is the unknown
total number of leads in the spatial area. The idea is
that n; is measured for a few bins and that 4 and N are
estimated. To accomplish this, (1) is rewritten in linear
form as

Nw\ 1

In(n;) —ln( 7 > Ax,. 2)
Letting a =In(Nw/A) and b=A"" and solving for a and
b by the method of least squares with the observed
data, the mean of the distribution and the total number
of leads can then be estimated.

Experiments with this model show it to be very
sensitive to the bin width and the number of bins,
in which leads actually occur in the lower-resolution
imagery. This is not unexpected considering that the
entire range of x is being estimated in the least squares
model by observations in only one part of its range. A
more fundamental problem exists with this method: As
shown earlier, the widths of the leads observed in the
lower-resolution data are probably not the true widths
of those leads. Figure 11 illustrates the problem where
the actual lead width distribution—which is exponen-
tial—in the simulated leads image of Figure 3 is esti-
mated using the above method and the observations
from each degraded image. Significant departures from
the actual distribution are obvious.

Is it possible to unmix the pixels and thereby obtain
the true lead widths? Using a single spectral band, it is
not possible when ice of different thicknesses, and thus
different reflectances and surface temperatures, is pres-
ent in the field-of-view. For a brief time during the
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Figure 11. Estimated actual width distributions from ob-
served lead widths at each field-of-view or degradation
(DEGO-DEGS3) of the simulated lead network shown in Fig-
ure 3. Also shown is the model distribution used to gener-
ate the leads in the image.

summer when new ice is not forming in the leads,
the percentage of open water within the FOV can be
calculated with a single spectral band since all leads can
be assumed to contain only open water and therefore
essentially the same reflectance or temperature. During
the winter when no visible-band data are available, no
unmixing is possible since leads can consist of a large
range of ice thicknesses. During the spring and fall
months, the problem can, in theory, be solved using
one thermal and one visible-band observation and an
energy balance approach as follows. The total contrast
of a lead pixel in both a thermal and a visible-band
image of the same lead are observed. The mean back-
ground (ice) temperature and albedo, T, and @, are
determined from the data. This leaves two equations
with three unknowns:

T,-T,
Ctot,m = P‘—T—,

aT - aE
Ctot,vzs = p—

B

Actually, the target (lead) temperature and albedo are
physically related, although the relationship is a complex
one. An energy balance model is used to determine the
target albedo for a given target temperature (Maykut,
1982):

(1-a)F, = Lee + Fi+ €aFi + F;+ F,+ F, =0,
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where a is the albedo, ¢ is the longwave emissivity, o
is the Stefan-Boltzmann constant, I is the amount of
shortwave energy that penetrates the ice and does not
directly heat the surface, F, and F; are the downwelling
shortwave and longwave radiation, F;, and F, are the
sensible and latent heat fluxes, and F, is the conductive
heat flux. A flux toward the surface is positive. The
energy balance equation is solved for a range of possible
target temperatures, T, < T, < 273.15 K, until a combi-
nation of p, T, and a, is found that is consistent with
the observed total contrasts.

While in theory this method will work, in practice
it would be difficult to accurately estimate all the neces-
sary parameters. It is not our purpose here to present
methods of retrieving these parameters, but instead we
summarize the potential error through an example of
the sensitivity of the energy balance approach: If the
target albedo @, can be estimated to within 0.05, for
example, the range of p that could satisfy the above
equations is 0.455-0.556 for a, = 0.7, a true p of 0.5 and
a true @, of 0.2. With a 1-km FOV this translates into
a range in lead widths of 445-556 m, where the true
width is 500 m. While the use of physical models can
help the unmixing process, we do not expect that we
will ever be able to fully resolve the mixture components
with existing data.

As can be seen in Figure 6, however, the unmixing
of pixels to determine the actual lead widths observed
may not be necessary. The fact that the mean lead
widths change in a predictable way with increasing pixel
size implies that the mean of the width distribution
measured at one field-of-view can be used to estimate
the mean width at another field-of-view. Even though
the rate of change of mean lead width with pixel size
depends on the threshold used (not shown), the relation-
ship is approximately linear for a given thresholding
operation. This relationship can be utilized as follows.
For an image at a given field-of-view, determine the
mean lead width. Degrade the image and once again
determine the mean lead width using the same thresh-
olding operation as before. The two points define a line
analogous to those in Figure 6. The mean lead width
at a narrower FOV can then be determined and applied
in (2).

Of course, the relationship is not perfectly linear,
so that some error in the predicted mean lead width
can be expected. As an example, we consider the two
images with the smallest and greatest error in turbulent
heat flux due to FOV, as given in Table 1, images B
and F. The relationships for these two images are among
the most nonlinear of those examined. For image B the
mean lead width at a pixel size of 320 m is 680 m;
degrading that image to a 640 m pixel size would yield
a mean lead width of approximately 1080 m, also as
indicated. If these two points were then used to extrapo-
late back to a FOV of 80 m, the estimated lead width
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would be 360 m as opposed to the 231 m value actually
measured in the imagery. The difference between the
turbulent flux calculated for a single lead (no area
weighting) whose width is the mean width at 320 m
FOV and that calculated at the 80 m FOV is 16 W m~2
(4.1% difference) compared to 12 W m~2 (3.1%) using
the mean width extrapolated to an 80 m FOV from
measurements at 320 m FOV. For image F, which
showed the greatest sensitivity of turbulent fluxes to
field-of-view, the corresponding errors are 25 W m=2
(6.3%) and 15 W m~2 (3.8%).

Total Area

If lead area fraction in satellite imagery follows a known
scaling law, then the “true” area fraction can be esti-
mated from the area fraction determined at any scale.
Fractal geometry is type of scaling relationship that has
been used in the analysis of geophysical phenomena
and deserves mention in the context of lead area. In
particular, the stream length-drainage area relationship
has been described in terms of fractals (Robert and Roy,
1990). However, in that and related studies the streams
have no width and are therefore not applicable to the
lead studies presented here. In contrast, Karlinger and
Troutman (1992) have examined the “fat” fractal rela-
tionship between river channels with finite widths and
drainage area. An examination of the data presented in
Figure 7 reveals that in general the fractional area
coverage of leads decreases exponentially (log-linear)
with increasing pixel size, and in some cases the de-
crease is even linear, so that the log-log relationship
described by fractal scaling laws does not appear to
apply.

As with lead widths, the rate of change of area
fraction with increasing pixel size is not constant, but
rather is a function of the threshold used. In fact, the
direction of change is also threshold-dependent, so that
the lead area may increase or decrease with increasing
pixel size. The theoretical reasons for this are examined
in Key (1993), where the distributions of the subpixel
area fraction of various geophysical fields with known
covariance structures are modeled by a Beta probability
distribution, and the estimated total area fraction in
an image is determined as a function of threshold.
Unfortunately, the relationship between digital number
(or temperature or reflectance) and the subpixel area
fraction can be complex, so that expressing the subpixel
area fraction threshold as a DN threshold is often not
possible.

Therefore, perhaps the best estimate of the true
area fraction of leads in an image is obtained using
the procedure outlined earlier for mean lead width:
degrading the image once, assuming an exponential or
possibly linear relationship, and extrapolating back to a
smaller FOV. Of course, the same thresholding opera-

tion must be used for both images (the Sobel operator
here). As was done in the previous section, the potential
error in this method for the Landsat images can be
examined using the data in Figure 7. Using image B,
lead fraction extrapolated to an 80 m FOV from observa-
tions at an FOV of 320 m is 0.031 versus the observed
fraction at 80 m of 0.0378. Combining this error with
the error in open-water turbulent flux associated with
mean lead width as calculated in the previous section,
the error in using the extrapolated lead fraction and
lead width versus the statistics observed at an 80 m
FOV is 5.7% of the areally averaged turbulent heat
flux. If the lead statistics are not adjusted for field-of-
view, that is, if the lead statistics observed at an FOV
of 320 m are used, then the error increases to 15.6%.
For image F, the error is 20% using the extrapolated
statistics compared to 40.7% percent using the statistics
at 320 m. In these two cases, extrapolating the lead
statistics reduces the average error in turbulent flux by
about 57%.

SUMMARY AND CONCLUSIONS

Given the importance of sea-ice leads for climate pro-
cesses and the desirability of mapping leads by remote
sensing, the accuracy of lead mapping using imagery
with different spatial resolutions is a critical issue. To
investigate the effect of sensor resolution on lead widths
and areal coverage, Landsat MSS data were degraded
from 80 m to 640 m fields-of-view, using the modulation
transfer function for the sensor. In addition, synthetic
images were created where true lead widths and area
coverages are known. For the Landsat imagery, the
Sobel operator provides an objective and consistent
method to segment an image into lead / not-lead areas.

It can be seen that small leads tend to disappear
in the coarser resolution data and large leads “grow”
primarily by becoming wider. The total lead fraction
decreases as field-of-view increases, roughly following a
log-linear relationship. Both the rates and direction of
change are, however, closely tied to the threshold used
in creating the binary image. Lead orientation distribu-
tions also change with increasing pixel size, indicating
that, in the imagery examined, small leads exhibit
different orientations than larger leads. The importance
of incorrect lead width distributions and area fraction
is illustrated with respect to area-weighted heat fluxes,
where the difference between lead statistics derived
from images with 80 m and 640 m FOVs translates into
an average error in turbulent heat flux of 37%, which
includes the combined effects of an apparent decrease
in lead-covered area and the increase in mean lead
width as FOV increases. If the empirical relationship is
applied to extrapolate mean lead width and lead-covered
area to correct for scale, the error in the estimate of




areally averaged heat loss is reduced by 57% in the two
examples studied.

Although our emphasis was to define the effects of
image field-of-view on lead statistics and turbulent en-
ergy flux, applications for ice and climate modeling
and validation acually require knowledge of the true
distribution of leads in the ice pack; that is, the distribu-
tion that one would obtain by sampling at a field-of-view
small enough to resolve the number and dimensions of
all leads. For the applications here, we took the lead
information sampled at 80 m to be true. The next step
is test how well the observed relationships hold for the
interval from 80 m down to 25 m or less. Work is
underway to test this using the statistical distributions
and extrapolation procedures discussed earlier in combi-
nation with imagery at different scales, including ERS-1
synthetic aperture radar data, airborne passive micro-
wave imagery, and aerial photographs.

Of course, the problem is not limited to the scaling
effects of leads. Clouds may have an even greater influ-
ence on local and regional climate, and the effect of
sensor resolution on estimated cloud amount is signifi-
cant (Key, 1993). Therefore, radiative fluxes computed
using satellite-retrieved cloud properties will almost
certainly be in error, the magnitude of which will de-
pend on the cloud form, size, vertical placement, micro-
physical properties, atmospheric conditions, and surface
characteristics.
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