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ABSTRACT

The Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched in 2012 on board the Global

Change Observation Mission 1st–Water (GCOM-W1) satellite. This study presents a robust evaluation of

AMSR2 algorithms for the retrieval of snow-covered area (SCA) and snow depth (SD) that will be used

operationally by the National Oceanic and Atmospheric Administration (NOAA). Quantitative assessment

of the algorithms was performed for a 10-yr period with AMSR-E and a 2-yr period with AMSR2 data using

the NOAA Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover and in situ SD data as

references. AMSR-E SCA showed a monthly overall accuracy rate of about 80% except in May. Accuracy

improves significantly to over 90% when wet snow cases are excluded, and accuracy differences between

ascending and descending portions of orbits also decrease. Microwave-derived SCA over dry snow areas can

therefore be obtained with accuracy close to optically derived SCA.An evaluation of the results for AMSR-E

SD showed a low overall bias of 1 cm and a root-mean-square error of 20 cm. Results for AMSR2-based SCA

and SD are similar to those from AMSR-E. Biases and root-mean-square errors show dependencies on el-

evation, forest fraction, the magnitude of snow depth, and snow cover class.

1. Introduction

Snow is one of the most dynamic hydrological vari-

ables on the earth’s surface and is the cryospheric

component with the largest seasonal variation in spatial

extent. Over Northern Hemisphere lands, snow cover

ranges from about 45.2 3 106 km2 in January to 1.9 3
106 km2 in August (Barry et al. 2007). Because of its

dramatic seasonal variation and high reflectivity, snow

plays a key role in the global energy and water budget

(Barry et al. 2007; IPCC 2007). Snow affects regional

and global climate by modulating the atmosphere

(Barry 2002; Barry et al. 2007; Cohen 1994; Cohen and

Entekhabi 1999; Walsh 1984). For example, Cohen and

Entekhabi (1999) showed that early-season Eurasian

snow cover and the Siberian high pressure system affect

Northern Hemisphere winter atmospheric circulation

and suggested that information on the snow cover dis-

tribution can be very useful in winter climate prediction.

The hydrologic importance of snowmelt also has been

actively discussed (Dyer 2008; Hamlet and Lettenmaier

1999; Yang et al. 2003; Zhang et al. 2001).

Satellite remote sensing is the primary tool for map-

ping the global distribution of snow parameters such as

the snow-covered area (SCA), snow depth (SD), and

snow water equivalent (SWE). Both optical and micro-

wave satellite measurements have been used to retrieve

SCA. However, SWE and SD are nearly impossible to

measure directly from optical imagery because the

electromagnetic radiation emanating from the top few

centimeters of snow dominates the remote sensing sig-

nal at optical wavelengths. In addition, snow retrievals
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from optical satellite measurements require clear-sky

conditions and sufficient daylight. Microwave radiation

is unhindered by darkness and clouds and penetrates a

deeper layer of snow cover.

Passive microwave measurements collected from

different satellite sensors—for example, the Scanning

Multichannel Microwave Radiometer (SMMR)(Chang

et al. 1987), the Special Sensor Microwave Imager (SSM/

I) (Grody 1991; Grody and Basist 1996), the Special

Sensor Microwave Imager/Sounder (SSMIS) (Sun and

Weng 2008), the Advanced Microwave Sounding Unit

(AMSU) (Ferraro et al. 2005), and the Advanced

Microwave Scanning Radiometer for the Earth Ob-

serving System (AMSR-E) (Kelly 2009; Tedesco and

Narvekar 2010)—have been used for global retrievals

of SCA, SD, and SWE. The Advanced Microwave

Scanning Radiometer 2 (AMSR2) instrument is a pas-

sive microwave instrument launched in 2012 on board

the Global Change Observation Mission 1st–Water or

‘‘Shizuku’’ (GCOM-W1) satellite (http://suzaku.eorc.jaxa.

jp/GCOM_W/w_amsr2/whats_amsr2.html). It is effec-

tively a replacement for AMSR-E (launched in May 2002

on board Aqua), which stopped regular scanning in

October 2011.

The main objective of this study is to conduct an in-

depth assessment of heritage SCA and SD algorithms

applied toAMSR2 data that have been implemented for

operational use at the National Oceanic and Atmo-

spheric Administration (NOAA) (see Table 1). The

SCA algorithm is based on the decision tree classifica-

tion method of Grody (1991) and Grody and Basist

(1996, referred to as Grody’s SCA algorithm) with snow

climatology tests and wet snow filter as enhancements

that are introduced here. The SD algorithm is based on

the current NASA AMSR-E SD algorithm described

fully in Kelly (2009, referred to as Kelly’s SD algorithm).

This is an enhanced version of the original NASA

AMSR-E SD baseline algorithm (Chang et al. 1987) that

computes SD dynamically using adjustable coefficients

to account for spatially and temporally varying snow

grain size. While Grody’s SCA algorithmwas developed

for SSM/I, applications to SSMIS and AMSU data have

been documented and evaluated (Ferraro et al. 2005;

Grody et al. 2000; Grody and Basist 1996; Kongoli et al.

2007; Sun andWeng 2008). This is the first assessment of

the algorithm and its new enhancements usingAMSR-E/

AMSR2 measurements.

This study significantly extends the validation efforts

of Kelly (2009), who used 2 years of in situ SD data, and

Tedesco and Narvekar (2010), who used 3 years of SD

data from the National Operational Hydrologic Remote

Sensing Center (NOHRSC) Snow Data Assimilation

System (NOHRSC 2004) and the World Meteorologi-

cal Organization (WMO) (http://www.ncdc.noaa.gov).

Here we use 10 years of AMSR-E and 2 years of

AMSR2 data and a more comprehensive analysis of

performance dependencies on elevation, forest fraction,

snow depth, and snow class. This type of error analysis

provides the uncertainty information needed for varia-

tional data assimilation and optimal interpolation tech-

niques. For example, a blended analysis of SD has been

developed operationally at NOAA and integrated into

the Interactive Multisensor Snow and Ice Mapping

System (IMS) (Kongoli andHelfrich 2015). The analysis

blends in situ and microwave SD data using the optimal

interpolation method (Brasnett 1999) and requires un-

certainty SD information as input. Of additional value to

these assimilation approaches is the quantification of

uncertainties with respect to geomorphic attributes such

as elevation and surface type, and seasonality, which are

explored in depth here.

2. Data and methods

a. The AMSR-E and AMSR2 instruments

AMSR-E is a passive microwave radiometer sensing

microwave radiation at six frequencies ranging from 6.9

to 89.0GHz with fields of view from approximately 5 to

50km (Table 2). This microwave radiometer on board

the polar-orbiting satellite (Aqua) operationally pro-

vided snow properties (SCA and SWE; Tedesco and

Narvekar 2010) until it failed in regular scanning as a

result of an antenna problem in October 2011. AMSR2

is a microwave instrument that was launched in 2012 on

board the GCOM-W1 satellite. Now that GCOM-W1 is

part of the ‘‘A-Train’’ constellation along with Aqua,

AMSR2 is considered as the successor to AMSR-E

but with several enhancements: larger main reflector,

additional 7.3-GHz channels, an improved calibration

system (Imaoka et al. 2010), and improved spatial res-

olution (Table 2). Since AMSR-E and AMSR2 have

the same center frequencies and corresponding band

widths, AMSR-E brightness temperatures are used as

TABLE 1. AMSR-E/AMSR2 snow property retrieval algorithms

used in this study.

Algorithms or methods

Snow cover - Grody’s SCA algorithm (Grody 1991;

Grody and Basist 1996)

- enhancements

: Snow climatology (NESDIS weekly snow

frequency 1973–2000)

: Wet snow filter (Tedesco and Narvekar 2010)

Snow depth - Kelly’s SD algorithm (Kelly 2009) over

AMSR-E/AMSR2-detected snow cover

2320 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32

http://suzaku.eorc.jaxa.jp/GCOM_W/w_amsr2/whats_amsr2.html
http://suzaku.eorc.jaxa.jp/GCOM_W/w_amsr2/whats_amsr2.html
http://www.ncdc.noaa.gov


proxies for AMSR2 in this study. Level 2A half-orbit

AMSR-E brightness temperature products (V12) and

level 1B half orbit of AMSR2 brightness temperature

products (L1SGBTBR) are used in this study.

b. Interactive Multisensor Snow and Ice Mapping
System

IMS is an interactive, operational snow and ice map-

ping system. It was originally introduced in 1999 based on

the Ramsay (1998) method of producing daily maps over

the Northern Hemisphere at 24-km resolution. In March

2004, the spatial resolution of the IMS snow products was

further increased to 4km (Helfrich et al. 2007).

To generate snow extent maps, analysts primarily rely

on the visible imagery from polar-orbiting and geosta-

tionary satellites. The imagery from geostationary satel-

lites is utilized in the form of animations, which help to

distinguish moving clouds from snow. Quite often ana-

lysts visually observe and map the distribution of snow

cover through semitransparent clouds. This is an obvious

advantage compared to automated techniques based on

visible wavelengths where most clouds prevent a reliable

characterization of the land surface. Since 2006, the

upgraded IMS has access to several automated snow and

ice products generated at NOAA and NASA, as well as

surface in situ SD reports. Recently analysts also began

using images from live-streaming web cameras through-

out the world (Kongoli et al. 2012). The availability of

these additional sources of information has substantially

enhanced the potential of analysts to accurately reproduce

the snow cover distribution, especially in the case of per-

sistent cloud cover, which precludes the use of visible

imagery. IMS maps of snow and ice cover are considered

the primary NOAA snow cover product and are in-

corporated into all global and mesoscale operational nu-

merical weather prediction models run by NOAA’s

National Centers for Environmental Prediction (NCEP).

IMS maps are updated daily, making them potentially

useful for various environmental and practical applica-

tions at regional and local scales (http://www.natice.noaa.

gov/ims). A more detailed discussion on NOAA’s snow

cover products including IMS is given in Kongoli et al.

(2012). The IMS is currently being upgraded to generate

snow and ice maps at 1-km resolution. Another important

upgrade is the incorporation of a blended snow depth

analysis into its 4-km product (S. Helfrich 2014, personal

communication).

c. In situ measured SD

NOAA’s National Environmental Satellite, Data, and

Information Service (NESDIS) provides daily SD in-

formation from the Global Telecommunication System

(GTS) in land surface synoptic observations (SYNOP)

format, aviation routine weather report (METAR)

format, and U.S. National Weather Service (NWS)

Cooperative Observer (COOP) network format, which

were used as ground truth to evaluate AMSR-E and

AMSR2 SD. GTS and METAR SD were acquired

via a data management and visualization system called

the Man Computer Interactive Data Access System

(McIDAS) (http://www.ssec.wisc.edu/mcidas/). The U.S.

COOP SD data were acquired via NOAA’s Climate

Prediction Center (CPC). These datasets are also avail-

able at NOAA’s National Climatic Data Center (NCDC)

(https://www.ncdc.noaa.gov).

The locations of the ground sites (snow reported)

available on 15 January 2008 are shown in Fig. 1. If there

is no snow, WMO synoptic stations do not report SD

(Brasnett 1999), and thus the number of WMO’s re-

porting stations varies during the snow season. The

COOP network is the oldest and largest U.S. ground

observation network with currently more than 11 000

stations collecting data since 1981. Trained volunteers

perform hydrometeorological measurements under the

supervision of NOAA’s NWS (http://www.weather.gov/

rah/coop), which also acquires quality controls and dis-

tributes the data. Several thousand stations report a

daily summary that includes minimum and maximum

temperatures, snowfall, and SD.

d. SCA retrieval algorithm

Grody’s SCA retrieval algorithm is based on a de-

cision tree classification method that is described in

detail in Grody (1991) and Grody and Basist (1996).

TABLE 2. Comparison of AMSR2, AMSR-E (Imaoka et al. 2010), and SSM/I sensor (Hollinger et al. 1990) features.

AMSR2 Center frequency (GHz) 6.9/7.3 10.7 18.7 23.8 36.5 89.0

Bandwidth (MHz) 350 100 200 400 1000 3000

IFOV (km 3 km) 35 3 62 24 3 42 14 3 22 15 3 26 7 3 12 3 3 5

AMSR-E Center frequency (GHz) 6.9 10.7 18.7 23.8 36.5 89.0

Bandwidth (MHz) 350 100 200 400 1000 3000

IFOV (km 3 km) 43 3 75 29 3 51 16 3 27 18 3 32 8 3 14 4 3 6

SSM/I Center frequency (GHz) 19.4 22.2 37.0 85.5

Bandwidth (MHz) 240 240 900 1400

IFOV (km 3 km) 69 3 43 60 3 40 37 3 29 15 3 13
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Scattering surfaces (snow, deserts, rain, and frozen

ground) and nonscattering surfaces (vegetation, bare

soil, and water) are separated using brightness

temperature–based scattering indices, followed by the

application of additional brightness temperature–based

thresholds to remove confounding factors (e.g., rain,

frozen ground, and cold deserts). The algorithmwas first

applied to SMMR and SSM/I observations and later

adopted for application to the AMSU instrument

(Ferraro et al. 2005; Grody et al. 2000; Kongoli et al.

2007). Most recently Grody’s SCA algorithm has been

applied to SSMIS data (Sun and Weng 2008). To the

authors’ knowledge, this is the first time that Grody’s

SCA algorithm has been applied to AMSR-E or

AMSR2 data.

Figure 2 presents a high-level flow diagram of

Grody’s SCA algorithm applied to AMSR-E/AMSR2

data over land. In this study, an AMSR-E/AMSR2

pixel is considered as land where the land mask is 100%

at 6.9GHz in order to minimize the water body effects.

The land mask value is available as ‘‘Land/Ocean_

Flag_for6_10_18_23_36_50_89A’’ for AMSR-E or

‘‘Land_Ocean_Flag’’ for AMSR2 in the same file as the

half-orbit level 2A AMSR- E and level 1B AMSR2

brightness temperature products. The brightness tem-

perature differences between 18.7 and 36.5GHz and

between 23.8 and 89GHz (all vertically polarized) are

used as scattering indices to separate scattering (dif-

ference is larger than 0) from nonscattering surfaces,

followed by additional tests to remove warm and con-

vective rain, cold deserts, and frozen ground from the

scattering surfaces indicated by the two brightness

temperature differences.

To further reduce errors of false snow identification, a

snow climatology test has been added to Grody’s SCA

algorithm. This test compares the pixels identified as

snow by Grody’s SCA algorithm to a weekly snow fre-

quency (probability) dataset at 1/38 latitude/longitude

spatial resolution derived from processing NESDIS

weekly snow maps available at the same resolution for

the period 1973–2000 (http://www.cpc.ncep.noaa.gov/

data/snow/). If the probability of snow is zero, then the

snow identification of the pixel is rejected and the pixel

is labeled as ‘‘no snow.’’ Next, a wet snow test adopted

from the operational NASA AMSR-E SWE algorithm

has also been added. A snow pixel is classified as ‘‘dry’’

when TbH36 , 245K and TbV36 , 255K, where TbV

and TbH are vertically and horizontally polarized

brightness temperatures, respectively (Tedesco and

Narvekar 2010). This test is used in this study to detect

wet snow and to compare SCA and SD performance

statistics with and without wet snow cases. In Table 1,

the SCA detection algorithm used in this study is

shown.

e. SD retrieval algorithm

While the original NASA AMSR-E ‘‘baseline’’ op-

erational algorithm assumes that SD and SWE are

linearly dependent on the brightness temperature

spectral difference at 18.7 and 36.5GHz based on

methods described in Chang et al. (1987) and Chang

et al. (1997), the current NASA AMSR-E SWE algo-

rithm is based on the Kelly (2009) method of SD re-

trieval and an ancillary snow density climatology data

(Tedesco and Narvekar 2010). The main difference

between the Kelly (2009) method and the original

FIG. 1. The (snow reported) location of the surface synoptic

observation stations (WMO GTS and surface METAR reports:

558, blue dots) and U.S. cooperative stations (1084, red dots) on 15

Jan 2008.

FIG. 2. AMSR2 high-level flowchart to detect SCA. The

thresholds for brightness temperature–based scattering signature

test and rain/cold deserts/frozen ground filtering are the same as

those in Grody and Basist (1996).

2322 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32

http://www.cpc.ncep.noaa.gov/data/snow/
http://www.cpc.ncep.noaa.gov/data/snow/


baseline algorithm is the calculation of dynamical co-

efficients relating SD to brightness temperature spec-

tral gradients, as well as the use of a channel available

on the AMSR-E instrument that is not available on

either SSM/I or SMMR, for example, the 10.7-GHz

channel. Kelly’s SD algorithm is based on the following

empirical formulation:

SD(cm)5 ff

�
p1

(TbV182TbV36)

(12 fd0:6)

�

1 (12 ff)[p1(TbV102TbV36)

1 p2(TbV102TbV18)] , (1)

where

p15
1

log10(TbV362TbH36)
,

p25
1

log10(TbV182TbH18)
. (2)

Forest fraction (ff) is from the MODIS Land Cover

Type (MCD12Q1) International Geosphere–Biosphere

Programme (IGBP) classification (LCSCG 2012). IGBP

surface type has approximately 500 3 500m2 in gridcell

resolution, and ff is calculated by considering the pixels

around the center location of an AMSR-E pixel

within a 7-km radius. Forest density (fd) is from the

MODISVegetationContinuous Fields (VCF;MOD44B)

product (Townshend et al. 2011). VCF has 250 3 250m2

in gridcell resolution and is circularly smoothed around

the center location of an AMSR-E pixel within a

7-km radius.

In Eq. (1), SD of the forest snow composite is com-

puted as the sum of SD over the forest and nonforest

snow components. Forested SD is computed from the

brightness temperature difference at 18.7 and 36.5GHz

in proportion to the vegetation fraction ff, whereas

nonforest SD is computed from both the TbV10 2
TbV18 and TbV10 2 TbV36 in proportion to the snow

fraction (12 ff). Use of the TbV102TBV18 over snow

is justified by its sensitivity to deep snow. Note that the

coefficients in Eq. (1) are variable and computed from

brightness temperature polarization differences [Eq.

(2)]. The effect of complex topography has not been

considered in this study since recent studies did not find

obvious retrieval contamination from topographical

factors (Dong et al. 2005; Vuyovich and Jacobs 2011;

Vuyovich et al. 2014). For example, Vuyovich et al.

(2014) suggested that errors from topography of the

ground can be averaged out or the saturation in the

microwave signal by deep snow can be more signifi-

cant. In this study, SD is calculated only over pixels

identified as snow using Grody’s SCA algorithm. In

Table 1, the SD calculation algorithm used in this study

is shown.

f. Evaluation methodology

The SCAwas generated fromAMSR-E/AMSR2 data

by applying Grody’s SCA algorithm including the snow

climatology and wet snow tests. The SD was also gen-

erated from AMSR-E/AMSR2 data by applying the

Kelly (2009) algorithm.

An evaluation of SCA is performed using 24- and

4-km IMS products as ‘‘ground truth’’ references. The

evaluation period includes five consecutive days (13–17)

of each month between June 2002 and September 2011

for AMSR-E and five consecutive days (13–17) of each

month between August 2012 andMay 2014 for AMSR2.

A sample of five consecutive days of each month was

selected to reduce the computational burden. In this

study, the term ‘‘monthly’’ indicates the results for these

5 days. For the collocation between IMS and AMSR-E/

AMSR2 pixels, the closest IMS pixel is searched around

an AMSR-E/AMSR2 pixel. Correct detection is coun-

ted when both AMSR-E/AMSR2 and IMS report snow

(or no snow), while errors are counted when AMSR-E/

AMSR2 reports snow (no snow) and IMS reports no

snow (snow).

Four statistical parameters are computed to evaluate

SCA: overall accuracy, snow detection rate, omission

error (snow missing rate), and commission error (false

alarm rate). These statistics are computed for the

descending and ascending orbits, and with respect to

forest fraction, elevation, and dry/wet snow. The

overall accuracy is calculated as the number of pixels

where both AMSR-E/AMSR2 and IMS detect snow or

no-snow divided by the whole number. The whole

number is the sum of the number of pixels that are

reported as snow or no snow by both AMSR-E/

AMSR2 and IMS. Omission error is calculated as the

number of pixels where AMSR-E/AMSR2misses snow

divided by the whole number. Commission error is

calculated as the number of pixels where AMSR-E/

AMSR2 incorrectly detects snow divided by the whole

number. In this study, the term, ‘‘false alarm’’ (com-

mission error) is used to indicate a situation where IMS

reports no snow and AMSR-E/AMSR2 reports snow.

Snow detection rate is calculated as the number of

pixels where both AMSR-E/AMSR2 and IMS detect

snow divided by the number of pixels where IMS de-

tects snow. The expressions for computing each pa-

rameter are shown in Table 3 giving each category,

denoted as A, B, C, and D.

Evaluation of SD is performed against in situ mea-

sured SD for five consecutive days in winter months
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(January, February, and December) between Decem-

ber 2002 and February 2011 for AMSR-E and between

December 2012 and February 2014 for AMSR2. Sta-

tistics include the root-mean-square (RMS) error and

bias for the ascending and descending orbits, and with

respect to forest fraction, elevation, and in situ SD. For

the collocation between in situ SD locations and

AMSR-E/AMSR2 pixels, the closest in situ SDwithin a

10-km radius of anAMSR-E/AMSR2 pixel is used. The

10-km radius from an AMSR-E/AMSR2 pixel is the

approximate medium value of the instantaneous field

of view (IFOV) size for the channels used in SD

calculation.

3. Results and discussion

a. Assessment of SCA

Figure 3 presents monthly statistics of AMSR-E SCA

with respect to 24-km IMS over the Northern Hemi-

sphere. Results are shown with two bars (above and

below) for each point in Figs. 3a and 3c, indicating as-

cending and descending orbits, respectively. Overall

monthly accuracy is about 80% except in May. The

decreased overall accuracy rate in May could be attrib-

uted to an increase in snowmelt coverage that resulted

in a larger omission error (underestimation of snow

coverage) and a lower snow detection rate. The omis-

sion error is larger than the commission error each

month. This demonstrates that AMSR-E SCA tends to

map less snow, which is consistent with Liang et al.

(2008), who showed that the commission error of

AMSR-E SCA compared with climate stations is less

than the omission error. Since any snow signal can be

dismissed if the snow covers only a small portion of the

AMSR-E field of view (28 km3 16km at 18.7GHz), the

underestimation of SCA using AMSR-E measurements

may also be due to the coarse resolution of AMSR-E

when compared to point station data (Liang et al. 2008).

The omission error shows a clear seasonal pattern,

whereas the commission error shows little seasonal

variation and stays below 5%. In Fig. 3a, the descending

orbit shows a higher overall accuracy rate and snow

detection rate than the ascending orbit. Also, the

descending orbit shows a smaller omission error than the

ascending orbit but a larger commission error. However,

the commission error is less than 5% for both orbits

except in October for the descending orbit (6%). Since

descending orbits have an equator crossing time of 0130

local time (LT) (morning time series) and ascending

orbits cross the equator at 1330 LT (afternoon time se-

ries), ascending orbits may have higher-frequency vari-

ability in microwave brightness temperature driven by

atmospheric temperature effects than descending orbits

(Foster et al. 1984; Markus et al. 2006) and daily thaw

and freeze cycles.

Figures 3c and 3d show error statistics and the number

of pixels for only AMSR-E-based dry snow cases. Wet

snow cases were excluded by applying the wet snow

filters. The application of wet snow filters primarily re-

duces the large portion (92%) of no-snow pixels from

AMSR-E measurements, implying that wet snow may

be detected as bare land (Foster et al. 1984), while a

small portion (5%) of AMSR-E snow pixels are ex-

cluded by the wet snow criteria as shown in Figs. 3b and

3d. The observation recorded during ascending orbit is

affected more by the wet snow filters than that of the

descending orbit. The pixels removed are not counted

for accuracy and error calculations in Fig. 3c. When wet

snow is excluded from the analysis, overall accuracy,

snow detection rate, and omission error are significantly

improved and the difference in accuracy between de-

scending and ascending orbits is reduced. On the other

hand, the commission error is not significantly impacted

(Figs. 3a and 3c). The reduction of the difference in

accuracy between the two orbits indicates that the ca-

pability of snow cover detection using descending and

ascending orbit microwave measurements is similar for

dry snow (Derksen et al. 2000).

Armstrong and Brodzik (2001) showed that passive

microwave data underestimate snow extent in Novem-

ber and, to a lesser degree, in December compared

to the NOAA weekly snow extent product (visible

band remote sensing) as a result of the inability of

passive microwave measurements to detect thin and

intermittent snow cover. They also showed that the

omission error decreases as winter progresses, be-

cause deeper snow enables more accurate detection of

snow cover by passive microwave measurements.

Regardless of the wet snow exclusion, the omission

error shows a decreasing trend from October to De-

cember and as winter progresses (January and Feb-

ruary) through March (Figs. 3a and 3c), which is

consistent with Armstrong and Brodzik (2001). In-

terestingly, the descending orbit still shows a smaller

omission error and larger commission error than the

ascending orbit over dry snow. Tedesco and Wang

TABLE 3. Confusion matrices for AMSR-E SCA product against

IMS data. Overall accuracy5 (A1D)/(A1B1C1D); omission

error (snow missing rate) 5 C/(A 1 B 1 C 1 D); commission

error (false alarm rate)5 B/(A1B1 C1D); and snow detection

rate 5 A/(A 1 C).

IMS snow IMS no snow

AMSR-E snow A B

AMSR-E no snow C D
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(2006) suggested that an atmospheric correction of

AMSR-E brightness temperatures is needed for snow

cover mapping by considering atmospheric tempera-

ture and absorption, and showed that AMSR-E snow

cover better matches (7% better) the MODIS product

when an atmospheric correction is employed. Savoie

et al. (2009) also demonstrated an improvement with

an atmospheric correction to SSM/I data. Since the

AMSR-E descending orbit is the morning orbit and

ascending is the afternoon orbit, the observed differ-

ence in SCA accuracy between the two orbits could be

due to atmospheric effects on brightness tempera-

tures, which are not accounted for in this version of

the algorithm. Therefore, it would be worthwhile to

investigate whether the atmospheric correction can

explain the difference in SCA accuracy between the

two orbits andmore importantly if it can improve SCA

retrievals.

The incorporation of a snow climatology into the SCA

algorithm produces more realistic retrievals. If a snow

climatology is not applied, then all pixels over land

where snow cannot occur (climatologically) will be in-

cluded in error statistics calculations, exaggerating the

overall accuracy rate and omission error unrealistically.

Figure 4 shows the accuracy and error difference be-

tween AMSR-E SCA without and with snow climatol-

ogy using the 24-km IMS data as the reference. The

overall accuracy rate of SCA without snow climatology

is larger than that of SCA with snow climatology, which

is approximately opposite of the omission error differ-

ence; meanwhile, the snow detection rate and commis-

sion errors are close to zero. Figure 4b shows the

increased number of AMSR-E valid pixels over land in

error statistics when snow climatology is not applied.

The increase in the number of valid AMSR-E pixels

(‘‘all cases’’) is around 45% in January and 660% in

FIG. 3. (a) Monthly comparison between AMSR-E and 24-km IMS SCA: the bars above and below each point

indicate descending (‘‘D’’) and ascending (‘‘A’’) orbits, respectively, and (b) number of AMSR-E pixels. (c),(d)

Results when wet snow cases are excluded. Five days (13–17) in each month between June 2002 and September

2011 are included.
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August, mainly because of the inclusion of pixels where

both AMSR-E and IMS do not detect snow. The num-

ber of valid AMSR-E pixels is 6.51 3 107 in January

(1.38 3 107 in August) when snow climatology is ap-

plied; meanwhile, the number of validAMSR-E pixels is

increased to 9.473 107 in January (1.053 108 inAugust)

without snow climatology application. Figure 4b shows

the increased number of valid AMSR-E pixels between

with and without snow climatology applications, that

is, the number difference in valid AMSR-E pixels with

and without snow climatology application. The values

‘‘45%’’ and ‘‘660%’’ are calculated by dividing these

number differences by the number of valid AMSR-E

pixels with snow climatology application. In winter

months, the increase in the number of pixels is due to the

addition of pixels over land below 208 in latitude, in-

cluding North Africa, South Asia, the southern part of

North America, and the northern part of South Amer-

ica. The (climatologically) snow-impossible area be-

comes wider poleward during summer months as shown

in Fig. 4b. The large difference in overall accuracy rate

and omission error shown in Fig. 4a can be explained

by the increase in the number of no-snow AMSR-E

and IMS pixels. The snow detection rate shows little

difference because only the IMS snow pixels are con-

sidered. The commission error shows a very slight dif-

ference since it is very small with and without snow

climatology.

To better understand the error sources, the overall

accuracy, snow detection rate, omission error, and

commission error for winter months (January, February

and December) are shown as a function of elevation

(https://lta.cr.usgs.gov/GTOPO30) and forest fraction

(Figs. 5 and 6) using 24-km IMS SCA as a reference.

Since more than half of AMSR-E snow pixels occur in

winter and the general pattern of accuracy and errors

during other seasons is similar to winter, statistics are

shown only for winter. The overall accuracy and snow

detection rate is generally well above 80% up to 3500m

in elevation. The omission error remains between 10%

and 20% for all elevation ranges, while the commission

error increases sharply above 3500m. When the wet

snow cases are excluded, as expected, the overall accu-

racy, snow detection rate, and omission error are im-

proved substantially approaching the IMS SCA, and the

difference in accuracy between the two orbits decreases

(Fig. 5b). On the other hand, the commission error re-

mains similar in magnitude along with a sharp increase

above 3500m.

Wang and Tedesco (2007) showed that passive mi-

crowave snow detection is biased at higher elevation

(atmospheric effect), and Frei et al. (2012) showed a

horizontal distribution of discrepancy betweenAMSR-E

and IMS/MODIS SCA, agreeing with Wang and

Tedesco (2007). Savoie et al. (2009) showed that mi-

crowave snow cover is overestimated compared to IMS

at high elevations. Over AMSR-E-detected dry snow

areas, the differences in accuracy/errors between de-

scending and ascending orbits are small in lower eleva-

tions and sharply increase above 3500m. When wet

snow cases are included, the descending orbit has a

higher overall accuracy, while the ascending orbit

shows a higher overall accuracy at lower elevations

(,1500m) than the descending orbit when wet snow

FIG. 4. (a)Monthly accuracy and error difference of SCAwith and without snow climatology (withoutminus with).

(b) Increase in the number of valid pixels without snow climatology: blue bars (‘‘all cases’’) include A, B, C, and D in

the confusion table (Table 3) and red bars include only D in the table. Five days (13–17) in eachmonth between June

2002 and September 2011 are included. The 24-km IMS data are used as the reference.
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areas are excluded (Fig. 5b). The wet snow exclusion

positively affects the overall accuracy up to 3500m and

also the snow detection rate and omission error in most

elevation ranges.

Figure 6 shows AMSR-E SCA statistics as a func-

tion of forest fraction. The overall accuracy and snow

detection rate are well above 80% for all forest frac-

tion ranges. Omission error slightly increases as the

forest fraction increases as shown in Fig. 6a. With the

wet snow exclusion, the overall accuracy and snow

detection rate are well above 90% and the omission

error decreases significantly for all forest fraction

ranges (Fig. 6b). The difference in SCA detection

between the two orbits also decreases with wet snow

exclusion for all forest fraction ranges. The weak

dependence of Grody’s SCA algorithm performance

on forest fraction is an interesting result that could be

explained by deeper snow covers associated with

FIG. 5. AMSR-E SCA statistics compared with 24-km IMS product as a function of altitude. Elevation is in 500-m

intervals, and themiddle value of each interval is shown on the x axis; e.g., 250m indicates an elevation range between

0 and 500m. The last x-axis label, 5000m, indicates the elevation range over 5000m. (a) SCA comparison between

AMSR-E and IMS: the bars above and below each point indicate descending (‘‘D’’) and ascending (‘‘A’’) orbits,

respectively. (b) The result after the wet snow criteria is applied. Five days (13–17) in each winter month (January,

February, and December) between December 2002 and February 2011 are included.

FIG. 6. AMSR-E SCA statistics compared with the 24-km IMS product as a function of forest fraction. Forest

fraction is in 0.1 intervals, and the middle value of each interval is shown on the x axis; e.g., 0.05 indicates a forest

fraction range between 0 and 0.1, except that the leftmost value, 0, on the x axis indicates a forest fraction of 0.

(a) SCA comparison between AMSR-E and IMS: the bars above and below each point indicate descending (‘‘D’’)

and ascending (‘‘A’’) orbits, respectively. (b) The result after the wet snow criteria is applied. Five days (13–17) in

each winter month (January, February, and December) between December 2002 and February 2011 are included.
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more forested terrain and the sensitivity of the

89-GHz channel. Note that Grody’s SCA algorithm uses

both 37- and 89-GHz channels for mapping snow.

Hall et al. (2000) suggested that Grody’s SCA algo-

rithm may map the shallower snow cover by the in-

clusion of the 85-GHz channel of SSM/I instead of

using only 37GHz (Chang et al. 1997; Schweiger and

Barry 1989). They also showed that the SSM/I-based

Grody SCA algorithm reasonably detects snow cover

over forested areas.

Since IMS snow cover data are also available at

4-km horizontal resolution, it is worthwhile to in-

vestigate the difference in algorithm performance

with respect to 4- and 24-km IMS SCA. The closest

IMS pixel to the AMSR-E pixel is selected for com-

parison between AMSR-E and 4-km IMS SCA.

Figure 7 shows the accuracy and error difference be-

tween AMSR-E SCA with respect to 4-km IMS and

AMSR-E SCA with respect to 24-km IMS. Because

the 4-km IMS product is available since March

2004, the period considered in Fig. 7 spans March

2004–September 2011. The number of valid AMSR-E

pixels slightly decreases by 0.04% (0.05% for AMSR-E

dry snow) with respect to 4-km IMS (not shown). With

the inclusion of wet snow cases (Fig. 7a), the overall ac-

curacy, snow detection rate, omission error, and

commission error of AMSR-E SCA are slightly im-

proved (mostly within61%) with respect to 4-km IMS

except in summer months. When wet snow is excluded

(Fig. 7b), the difference in accuracy lies within 60.5%.

Even though there are slight improvements in accu-

racy with respect to 4-km IMS data, the main patterns

of the error statistics with respect to 4-km IMS are

close to those with respect to 24 km IMS in Fig. 3,

indicating that both products could be used as refer-

ences in large-area assessments of microwave-derived

SCA. This result is in agreement with Brown et al.’s

(2010) study, which showed less than 10% of monthly

difference in SCA between 4- and 24-km IMS data

over the Arctic region.

The statistics of AMSR2 SCA (with respect to 24-km

IMS) with wet snow exclusion is shown in Fig. 8.

AMSR2 SCA also shows significant improvement in

the overall accuracy rate, snow detection rate, omission

error, and a decreased accuracy difference between

descending and ascending orbits with wet snow

exclusion, similar to the analysis of AMSR-E SCA.

Figures with only the wet snow exclusion are shown.

The overall accuracy rate of monthly AMSR2 SCA is

well above 80% every month and over 90% in winter

months (Fig. 8a). AMSR2 SCA shows the overall ac-

curacy rate above 80% up to 3500m (Fig. 8b) and

above 90% for all forest fraction ranges (Fig. 8c) in

winter months.

A regional assessment of AMSR-E SCA is per-

formed for various snow cover classes. Sturm et al.

(1995) classify snow cover into six classes: tundra, taiga,

Alpine, prairie, maritime, and ephemeral. Each snow

class possesses distinct physical properties—depth,

density, and stratigraphy—that in combination should

impact the ability of microwave measurements for

mapping snow differently. Note that Grody’s SCA al-

gorithm as well as other operational passive microwave

algorithms does not account for these snowpack prop-

erties that are known to influence passive microwave

measurements. The Sturm et al. (1995) snow classification

FIG. 7. Monthly accuracy and error difference between AMSR-E vs 24-km IMS and AMSR-E vs 4-km IMS SCA:

(a) including wet snow cases and (b) excluding wet snow. A sample of 5 days (13–17) in each month between March

2004 and September 2011 is selected.
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map at 0.58 resolution was obtained from the National

Snow and Ice Data Center (NSIDC) and was used

to compute error statistics with respect to 24-km

IMS SCA.

Table 4 summarizes error statistics and mean surface

temperature for each snow cover class. The error sta-

tistics exclude wet snow cases. Surface air temperature is

estimated by applying AMSR-E microwave brightness

temperatures to a simple linear regression algorithm

(Kelly 2009). In Table 4, labels A, B, C and D denote

detection rate categories (same as those in Table 3)

when both AMSR-E and IMS detect snow, AMSR-E

detects snow and IMS detects no snow, AMSR-E de-

tects no snow and IMS detects snow, and both AMSR-E

and IMS detect no snow, respectively. The highest

overall accuracy is shown for taiga snow class (97.4%)

followed by tundra (96.4%) and the lowest accuracy for

ephemeral (71.7%). The statistics for category A (cor-

rect snow detection rate) are negatively associated with

mean surface temperature: taiga has the lowest mean

surface temperature and ephemeral the highest. This

surface temperature dependence could be explained

by a higher rate of snow misses in a warmer weather

snow cover (more frequent wet snow cases) and/or by

the indirect effect of surface temperature on snow

properties that impact passive microwave measure-

ments, for example, snow metamorphism. For example,

taiga and tundra snow covers are associated with a larger

snow grain size parameter than other snow cover classes

(Sturm et al. 1995), which produces a stronger micro-

wave scattering signal and a higher snow detection rate

(Josberger et al. 1996).

b. Assessment of SD

Figures 9–11 present AMSR-E SD performance sta-

tistics (RMS error and bias) for SD less than 100 cmwith

respect to elevation, forest fraction, and the magnitude

of in situ SD over AMSR-E-detected dry snow, re-

spectively. Since more than 75% of the total number of

AMSR-E pixels with valid SD occurs during winter

months, the results are shown for only winter months.

Overall, the RMS error is 19.90 cm and the bias is

FIG. 8. Statistics of AMSR2 SCA with wet snow

exclusion. The bars above and below each point in-

dicate descending (‘‘D’’) and ascending (‘‘A’’) orbits,

respectively. (a) Monthly SCA statistics, (b) elevation

range, and (c) forest fraction range are the same as in

Figs. 5 and 6. A sample of five consecutive days of each

month betweenAugust 2012 and July 2014 are selected

in (a) and a sample of five consecutive days of winter

months between December 2012 and February 2014

are included in (b) and (c). The 24-km IMS snow

product is used as reference.
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1.16 cm. Statistics for the descending and ascending or-

bits are similar: the RMS errors are 19.93 and 19.86 cm,

and the biases are 1.81 and 0.26 cm for the descending

and ascending orbits, respectively.

It is important to note that 70% of AMSR-E pixels

collocated to in situ SD are located in the low-elevation

range between 0 and 500m, which substantially influences

the overall statistics (Fig. 9b). This lower-elevation bias

is a general concern arising from the distribution of in situ

SD–measuring stations skewed toward lower elevations.

AMSR-E SD is overestimated for elevations between 500

and 2500m and underestimated for elevations above

2500m. The negative bias and RMS error increase with

elevation above 1500m (Fig. 9a). Figures 9c and 9d show

histograms of in situ SD for elevation ranging between 500

and 1000m and 2500 and 3000m, respectively. The large

number of in situ SD values less than 10cm located be-

tween 500 and 1000m could explain the positive SD bias

in this elevation range.On the other hand, the distribution

of in situ SD between 2500 and 3000m (a larger portion of

in situ stations have a larger SD) could explain the nega-

tive SD bias.

The effect of forest fraction on AMSR-E SD is shown

in Fig. 10. As forest fraction increases, RMS error in-

creases and bias decreases below zero, which indicates

that the masking effect of the forest canopy on passive

microwave brightness temperature can be a source of

error for SD estimation (Foster et al. 2005; Kelly 2009;

Tedesco and Narvekar 2010). AMSR-E SD is over-

estimated over low forest fraction (below 0.4) pixels and

underestimated for forest fraction above 0.5, with the

magnitude of underestimation increasing as forest

fraction increases. The positive bias over low forest

fraction pixels could also be explained by the SD mag-

nitude effect—the predominance of small in situ SD

values over low forest fraction pixels in our sample and

the overestimation of shallow snow covers by Kelly’s SD

algorithm (Fig. 10c). Derksen (2008) showed that the

brightness temperature difference between 36.5 and

18.7GHz is reduced with denser forest fraction. Note

that this brightness temperature difference is used to

compute forest SD in Eq. (1) and thus the un-

derestimation of AMSR-E SD is closely related to the

forest fraction term as the forest fraction increases.

Derksen (2008) also showed that the brightness tem-

perature pair of AMSR-E 18.7 and 10.7GHz can be

used over the boreal forest area; therefore, it would be

worthwhile to consider these channels in the forest

fraction term in Eq. (1).

In Fig. 11, SD statistics are shown as a function of

in situ SD. RMS error and bias increase in magnitude as

SD increases, especially for large in situ SD, and this

dependence is much stronger than the dependence of

RMS error and bias on forest fraction and elevation. It

also shows that reliable SD estimation for snow deeper

than 50 cm remains a challenge despite the use of lower

AMSR-E frequencies (10.7 and 18.7GHz) over the

nonforested snow component in Eq. (1). The magnitude

of RMS error is generally larger than half of the middle

SD value of each in situ SD range. Kelly et al. (2003)

showed similar results of RMS error dependence on the

magnitude of SD and suggested two possible reasons:

microwave saturation at SD greater than 50–100 cm

(depending on grain size and density) and the spatial

limitation of in situ SD data to be representative of the

AMSR-E pixel resolution. Both descending and as-

cending orbits are generally close in bias andRMS error;

for example, the difference of both bias and RMS error

are less than 1 cm in magnitude except for the large SD

range (.90 cm).

The performance statistics for AMSR2 SD are shown

for dry snow cases as a function of elevation, forest

fraction, and in situ SD for winter months in Figs. 12a–c,

respectively. The pattern of variation of AMSR2 SD bias

and RMS error with respect to each factor is similar to

that of AMSR-E (Figs. 9a–11a) except for some differ-

ences inmagnitude. For example, AMSR2 SD shows bias

values over 10cm at elevation ranges between 500 and

2000m (Fig. 12a), whereas AMSR-E SD bias is smaller

than 10cm for this elevation range (Fig. 9a). Above

TABLE 4. Mean surface air temperature for each snow cover classification. A, B, C, D are indices corresponding to the confusion

matrices in Table 3. Mean surface air temperatures are calculated based on AMSR-E measurements (Kelly 2009) for the period between

June 2002 and September 2011. The value in parenthesis shows the percentage of the number of each category divided by the total number

of pixels. The overall accuracy rate is the sum of the percentage values in A and D.

Temp for A (K) Temp for B (K) Temp for C (K) Temp for D (K) Overall accuracy (%)

Tundra 249.2 (93.0%) 259.6 (1.2%) 263.5 (4.2%) 270.1 (1.6%) 94.6%

Taiga 247.4 (96.7%) 258.1 (0.9%) 264.6 (1.7%) 273.4 (0.7%) 97.4%

Maritime 255.4 (78.4%) 258.9 (4.0%) 262.0 (15.1%) 268.8 (2.5%) 80.9%

Ephemeral 253.1 (40.3%) 256.8 (22.2%) 264.6 (6.1%) 270.3 (31.4%) 71.7%

Prairie 254.5 (56.1%) 256.6 (14.3%) 262.6 (11.7%) 265.7 (17.9%) 74.0%

Alpine 256.9 (85.2%) 258.1 (3.8%) 265.5 (9.3%) 267.8 (1.7%) 86.9%
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2500m, RMS error of AMSR2 SD is smaller than that of

AMSR-E SD. AMSR2 SD RMS error slightly decreases

for forest fraction above 0.4 (Fig. 12b), whereas

AMSR-E SD RMS error slightly increases (Fig. 10a).

With respect to in situ SD, the pattern of variation in

RMS and bias is strikingly similar (Figs. 12c and 11a),

both indicating a strong dependence of these perfor-

mance measures on the magnitude of SD for snow

deeper than 50 cm.

Table 5 shows AMSR-E SD performance statistics for

each snow cover class. Positive (negative) biasmeans that

AMSR-E retrieval overestimates (underestimates) SD.

Each snow cover class has RMS error values between 18

and 22 cm except ephemeral snow (15 cm). Ephemeral

snow areas have smaller SD compared to other snow

classes and a smaller number of validAMSR-Epixels.On

the other hand, biases differ among the snow classes in

both magnitude and direction. Ephemeral, tundra, taiga,

and prairie snow classes have a positive bias, whereas

Alpine and maritime snow classes have a negative bias.

The ephemeral snow class has the largest positive bias and

the maritime snow class the largest negative bias. Dong

et al. (2005) also showed that maritime has the largest

(negative) mean error of microwave SWE among snow

classes since the maritime area is in warmer climates near

open water bodies. These results demonstrate that the

dynamic parameterizations for p1 and p2 coefficients in

Eq. (2) may not be sufficiently robust and may need

FIG. 9. (a) Snow depth statistics by elevation: the bars above and below each point indicate descending (‘‘D’’) and

ascending (‘‘A’’) orbits, respectively. (b) The number of AMSR-E pixels corresponding to the ground truth ob-

servations. SYNOP stations and U.S. COOP stations are considered as the ground truth. Elevation in 500-m in-

tervals, and the middle value of each interval is shown on the x axis; e.g., 250m indicates an elevation range between

0 and 500m. Snow depth histogram is shown for elevation range (c) between 500 and 1000m and (d) between 2500

and 3000m. A sample of five consecutive days (13–17) in each winter month (January, February, and December)

between December 2002 and February 2011 is selected.
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readjustment. For example, they could be adjusted

seasonally and regionally for each snow class. Addi-

tionally, the use of AMSR-E/AMSR2 lower-frequency

channels in the forest element should also be tested.

4. Summary and conclusions

This study presents an in-depth assessment ofAMSR2

algorithms for the retrieval of snow-covered area (SCA)

and snow depth (SD) that will be used operationally by

the National Oceanic and Atmospheric Administration

(NOAA). AMSR2 on board the Global Change Ob-

servationMission 1st–Water or ‘‘Shizuku’’ (GCOM-W1)

satellite is a follow-on instrument to NASA’s AMSR-E

with a similar channel configuration, improved calibration

system, and improved spatial resolution. The SCA algo-

rithm is based onNOAA’s heritagemicrowave algorithm

with snow climatology tests and wet snow filtering as new

enhancements. The SD algorithm is adopted from the

current version of the NASAAMSR-E operational SWE

algorithm.

Quantitative assessment of the algorithms was per-

formed for a 10-yr period for AMSR-E and a 2-yr period

for AMSR2 using the NOAA’s Interactive Multisensor

Snow and IceMapping System (IMS) 24- and 4-km snow

cover products and in situ SD data as ‘‘ground truth’’

references. Evaluation results for AMSR-E SCA with

respect to IMS showed the overall accuracy rate to be

generally above 80%. The overall accuracy rate and

snow detection rate are much closer to the IMS (above

FIG. 10. (a) Snow depth statistics by forest fraction: the bars above and below each point indicate descending (‘‘D’’)

and ascending (‘‘A’’) orbits, respectively. (b) The number of AMSR-E pixels corresponding to the ground truth

observations. Ground site SD are considered as the ground truth. Forest fraction in 0.1 intervals, and themiddle value

of each interval is shown on the x axis; e.g., 0.05 indicates a forest fraction range between 0 and 0.1, except that the

leftmost value, 0, on the x axis indicates a forest fraction of 0. Snow depth histogram is shown for forest fraction range

(c) between 0 and 0.1 and (d) between 0.8 and 0.9. A sample of five consecutive days (13–17) in each winter month

(January, February, and December) between December 2002 and February 2011 is selected.
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90% in winter months) when wet snow cases are ex-

cluded. In addition, the difference in SCA accuracy

between the descending and ascending orbits decreases

significantly when wet snow areas are excluded, though

the descending orbit still shows a smaller omission error

and larger commission error than the ascending orbit.

The omission error exhibits a seasonal pattern where it

decreases as winter progresses, while the commission

error is nearly constant (around 5%). Performance sta-

tistics show no dependency on elevation up to 3500m,

with an omission error between 10% and 20% and a

commission error around 5%. Above 3500m, the com-

mission error increases sharply. Performance statistics

also show only a weak dependence on forest fraction.

This apparent contradiction to other studies could be

attributed in part to a higher sensitivity of the 89-GHz

channel to snow cover than the 37GHz used by other

algorithms.

With respect to snow classes, the highest overall

accuracy rate was shown for the taiga snow class,

followed by tundra; the lowest accuracy rate was for

the ephemeral snow class. The correct snow detection

rate was negatively associated with mean surface

temperature: taiga had the lowest mean surface tem-

perature and ephemeral the highest. This surface

temperature dependence could be explained by a

higher rate of snow misses in a warmer weather snow

cover (more frequent wet snow cases) and/or by the

indirect effect of surface temperature on snow prop-

erties that impact passive microwave measurements,

for example, snow metamorphism. Incorporation of a

snow climatology into the SCA algorithm is recom-

mended because it produces more realistic results.

AMSR-E SD error statistics (RMS error and bias)

with respect to in situ measured SD show a de-

pendence on elevation, forest fraction, in situ SD, and

snow cover class. RMS error increases with elevation,

forest fraction and the magnitude of in situ SD. Bias

dependence on elevation and forest fraction were

explained by the SD distribution. Positive bias

for low-elevation and low forest fraction areas was

attributed to the predominance of shallow snow

covers and the negative bias over high-elevation and

high forest fraction areas was attributed to the pre-

dominance of deeper snow covers. The positive bias

over ephemeral snow and the negative bias over

maritime snow covers could also be partially attrib-

uted to reduced sensitivity to shallow and deep snow,

respectively. Saturation of the microwave SD signal

to deeper snow remains a fundamental unresolved

problem despite the use of AMSR-E low-frequency

microwave channels. The AMSR2 SCA and SD

comparisons to in situ SD show similar results to those

of AMSR-E, although the dependence of error sta-

tistics on elevation and forest fraction are somewhat

different. Given the climatic controls on the regional

distribution of snow cover, a reasonable strategy to

improve the retrieval accuracy of SD and SCA would

be regional adjustment of Grody’s SCA and Kelly’s

SD algorithm coefficients for use with AMSR2.

FIG. 11. (a) Snow depth statistics by in situ SD: the bars above and below each point indicate descending (‘‘D’’) and

ascending (‘‘A’’) orbits, respectively. (b) The number of AMSR-E pixels corresponding to the ground truth ob-

servations. In situ SD is divided into 10-cm intervals, and themiddle value of each interval is shown on the x axis; e.g.,

15 indicates an elevation range between 10 and 20 cm.A sample of five consecutive days (13–17) in eachwintermonth

(January, February, and December) between December 2002 and February 2011 is selected.
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Several other factors need further investigation.

The utility of applying an atmospheric correction to

the SCA algorithm (and perhaps to the SD algo-

rithm as well) needs to be evaluated. Regional and

perhaps seasonal adjustment of dynamic algorithm

coefficients for 18.7- and 10.7-GHz brightness tem-

peratures may improve estimated SD, especially for

deeper snow.
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TABLE 5. Mean bias and RMS error of SD comparison between AMSR-E measured and in situ observed (AMSR-E minus in situ

observation) for each snow cover classification. Statistical values are based onAMSR-Emeasurements for the winter months (December,

January, and February) between December 2002 and February 2011.

RMSE (cm) Bias (cm) Mean (cm) in situ observation No. of valid AMSR-E pixels

Tundra 18.77 4.51 25.10 96 282

Taiga 20.96 3.77 29.18 16 4758

Maritime 19.37 25.34 20.20 99 887

Ephemeral 14.95 6.05 8.40 3876

Prairie 18.93 2.75 18.49 15 8219

Alpine 21.97 24.45 25.14 64 195

FIG. 12. Statistics of AMSR2 SD with wet snow

exclusion as a function of (a) elevation, (b) forest

fraction, and (c) in situ SD. The bars above and below

each point indicate descending (‘‘D’’) and ascending

(‘‘A’’) orbits, respectively. A sample of five consecu-

tive days (13–17) in wintermonths betweenDecember

2012 and February 2014 is selected.
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