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Abstract. A new method for estimating downwelling shortwave and longwave
radiation fluxes in the Arctic from TOVS brightness temperatures has been
developed. The method employs a neural network to bypass computationally
intensive inverse and forward radiative transfer calculations. Results from two
drifting ice camps (CEAREX, LeadEx) and from one coastal station show that
downwelling fluxes can be estimated with r.m.s. errors of 20 Wm ™2 for longwave
radiation and 35Wm~? for shortwave radiation. Mean errors are less than
4Wm™?2 and are well within the bounds required for many climate process studies.

1. Introduction

The lack of sufficient quantitative knowledge of the Arctic surface radiation
budget has been identified as an obstacle to a better understanding of the Arctic
atmosphere-ice—ocean system within the ‘global climate (World Maritime
Organization/World Climate Research Programme 1992). The U.S. interagency
Surface Heat Budget of the Arctic Ocean (SHEBA) (Moritz et al. 1993) initiative
identifies as one of its primary objectives the documentation of the Arctic surface
radiation budget. In particular, ice—ocean modelling studies typically use components
of the surface radiation budget derived from parameterizations and climatologies.
Data assimilation schemes designed to obtain statistics on the ice thickness distribu-
tion, an important climate indicator, require an ice growth rate that depends on the
surface radiation balance. Climatological values of questionable quality are currently
used to specify the surface radiation budget. In most cases these values do not vary
in space, and vary in time only at a very coarse resolution. Even though long-term
surface observations of radiative fluxes from Russian drifting stations exist, their
spatial coverage is very limited. In order to construct two-dimensional fields of
surface radiative fluxes, satellite data must be utilized.

In this paper we describe a method to estimate downwelling longwave and
shortwave fluxes in the Arctic. The method employs an artificial neural network
(ANN) to compute the relationship between radiative fluxes measured at the surface
and brightness temperatures from the High Resolution Infrared Radiation Sounder
(HIRS) and the Microwave Sounding Unit (MSU) components of the TIROS
~ Operational Vertical Sounder (TOVS). Results and comparisons with surface
observations from two field experiments, LeadEx and CEAREX, and one arctic
coastal station, Barrow, Alaska, are presented.
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2. Background » :

One approach to obtaining radiative fluxes at the surface from satellites is to
compute them from the vertical temperature and humidity profiles, cloud conditions,
and surface properties using a radiative transfer model. Due to the presence of errors
in the measurements and frequently encountered non-unique solutions, the retrieval
of these variables from satellite has to be treated as an estimation problem (Rodgers
1976). Values for these geophysical parameters are obtained from satellite radiances
via algorithms and models that divide the estimation of surface fluxes from satellite
into a multistage estimation problem. The algorithms are usually variations on the
following components: (a) scene identification (clear/cloudy); (b) retrieval of surface
radiative properties (temperature and reflectance), (c) retrieval of column optical
properties (atmospheric profile, cloud optical thickness, cloud height); and (d) compu-
tation of downwelling surface radiation or flux profiles. This approach is often
termed ‘physical’, even though it is better described as ‘physical-statistical’, since
statistical constraints have to be used to allow a solution to the profile retrieval
problem (Rogders 1976) and scene identification frequently includes the use of
empirically determined thresholds (Kergomard et al. 1993, Schweiger and Key 1994,
Rossow and Zhang 1995). For brevity and consistence with the literature we refer
to methods that include physics in the estimation as ‘physical’.

An alternative approach is to relate observed top-of-the-atmosphere (TOA) radi-
ances directly to simultaneous ground measurements of downwelling radiation. This
is usually achieved through multiple regression techniques, and is therefore empirical
or statistical (Morcrette and Deschamps 1986, Schmetz 1989). The physical approach
appears more attractive because once the underlying physical principles are identified,
it offers the opportunity for further development of the individual components and
allows for direct comparison with variables calculated in an atmospheric model, e.g.,
a general circulation model (GCM). Further, the inclusion of physics may be used
to find a solution to the estimation problem, which minimizes the estimation error
and is therefore optimal for the problem. (A statistical approach can only provide
an optimal solution for the given data set.) A physical approach naturally requires
that data for all the relevant variables are available and known within defined
accuracy limits. But this is the problem: in the Arctic, most of the relevant variables,
such as cloud fraction, cloud microphysical properties, surface albedo and temper-
ature, are poorly validated or have been measured only for limited areas and short
periods of time. Moreover, the inversion of high resolution temperature and humidity
profiles from a sounding system with broad weighting function such as the HIRS-2
is fundamentally an ill-conditioned problem. Maximum likelihood estimates used to
compute solutions to the inversion problem are sensitive to the selection of a first
guess profile. Similarly, the retrieval of cloud optical properties involves the resolution
of non-unique solutions of the inversion problem, especially for thin cloud over the
highly reflective surfaces typical of the polar regions (Key and Stone 1995).

We have previously used a physical approach to calculate surface radiative fluxes
in the Arctic from the International Satellite Cloud Climatology Project (ISCCP)
data set (Schv‘Veiger and Key 1994). Through sensitivity studies we found that few
of the input variables are known well enough to achieve a desirable accuracy of
5Wm™?2 on a monthly time scale. More recent work has shown substantial progress
in the area of physical retrieval algorithms using TOVS and AVHRR sensor systems
(Francis 1994, 1995, Key and Stone 1995). However, more research and thorough
validation are required before reliable algorithms will be available that retrieve
surface radiative fluxes at all times and everywhere in the Arctic and that do not
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require substantial tuning, which can introduce significant biases. In addition, phys-
ical retrieval methods commonly impose a significant computational burden, since .
both inverse and forward radiative transfer calculations need to be performed.
Performing these calculations for a multiyear data set using radiative transfer models
with the required degree of sophistication—even for a limited area such as the polar
regions—presents a formidable computational task. This paper therefore explores
an empirical approach incorporating physically relevant satellite and surface observa-
tions that promises to deliver accurate surface radiation fluxes in the Arctic, yet is
computationally efficient enough to force ice—ocean models.

3. Methodology
3.1. What is a neural net?

Artificial neural networks (ANNs) were initially used by neuroscientists in an
attempt to understand certain functions of the brain. Over the past decade they have
increasingly been applied to tasks involving the recognition of complex patterns such
as signal processing, optical character recognition, and even stock market forecasting.
Neural networks have also been used in a variety of remote sensing applications.
ANNSs have been applied to classification of Arctic clouds from the AHVRR sensor
(Key et al. 1989, Lee et al. 1990, Tovinkere et al. 1993), and for the retrieval of
temperature profiles from the TOVS and SSM/T sounding systems (Escobar et al.
1993, Butler and Meredith 1992). Although a variety of ANN architectures has been
created, the three-layer back-propagation network is the most popular and is the
architecture used in this research. Such networks consist of interconnected units
(nodes) that are organized in three layers: an input, an output, and a hidden layer.
Information in a neural network is processed by passing activation along connections
between individual nodes. This is done by calculating the activation 4 of node i as
the weighted sum of the activations at the connected nodes N:

A= f<Z w,,A,,> (1)

where w;, is the weight for the connection between nodes i and n, and f is the a
nonlinear function called the activation function. Frequently a sigmoid function is
used

1

f(A)—1+eXp(_A) (2)

As the network is presented with an input pattern, activation at the input nodes

is propagated over the hidden nodes resulting in a pattern at the output nodes.
Initially the weights between individual nodes are random and no information is
contained in the network. Adjusting the weights w;, for connections between nodes
is called the ‘learning’ process. An ANN can be viewed as a vector function O =
F(I), where O is the vector of output unit activities and I is the input unit vector.
In a back-propagation network, ‘learning’ is achieved simply by finding the weights
W, 80 as to minimize the difference between a presented training pattern and O.
This learning cycle involves the repetitive simultaneous presentation of matching
input and output patterns while the weights are adjusted using a gradient descent
search. Thus a neural network can also be viewed as a non-linear numerical optimiza-
tion‘procedure. Characteristics of neural networks that make them attractive for the
research presented here are: (1) they can, theoretically, determine any computable
function; (2) they handle noisy data well; (3) no assumptions about the statistical
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distribution of input variables are made; and (4) they are extremely fast. However,
since neural network-based estimation methods do not include any assumptions
about the underlying non-linear physics, estimates can only be truly optimal with
respect to the training data set and estimation errors need to be determined through
the application to an independent test or validation data set. '

3.2. Network configuration

The neural network used in this research is a standard three-layer feed-forward
network with a single layer of four hidden units. A logistic activation function and
the backpropagation with momentum learning functions (Rummelhart et al. 1986)
are used. The input layer consists of 27 nodes. Input nodes correspond to brightness
temperatures from the 19 HIRS longwave (3-7 um—15-0 um) channels, four MSU
microwave channels (53-73-57-95 GHz), the scaled visible band reflectance provided
by HIRS channel 20 (0-68 um), the cosines of the sensor scan angle and the solar
zenith angle. An additional input node holds the satellite identification number and
is needed to account for differences in the sensor systems between satellites. The
characteristics of the TOVS sensor are given in Kidwell (1995). The output nodes
correspond to the spectrally integrated longwave and shortwave fluxes at the surface.
The present network has only a single four-node hidden layer. The choice of the
optimal network configuration, specifically the number of hidden layer and units is
an area of ongoing research and debate. It is related to the complexity of the problem,
acceptable errors, training time, and the number of available training cases. A
network with a larger number of hidden units has a larger number of adjustable
parameters (weights of connections and biases of units) and is usually capable of
finding a better solution (smaller error) for the training cases, but does not generalize
well and may perform poorly on an independent set of test cases. The goal is therefore
to construct and train a network that produces an acceptable error in the test set
and has ‘generalized’ the problem. Although methods have been developed for
constructing networks that generalize well, the network architecture used in the
present work was determined by experimentation. Because of the large number of
free parameters (the network used ‘has 116 links+6 biases=122) and the
relatively small number of training cases (315 for CEAREX and LeadEx combined),
generalization error was minimized using stopped training (Finnoff et al. 1993).

3.3. Why do we expect this to work?

In order for a neural network to ‘generalize’ over a particular problem rather
than just ‘memorize’ each individual case, it has to be presented with the appropriate
information to perform this task. Clearly, if there is no relationship between TOVS
brightness temperatures and downwelling radiative fluxes at the surface, the network
will not be able to learn this task. Although one may approach this problem by
providing an input feature vector that contains many types of possibly related
information, it is clearly desirable to first examine the physical principles upon which
the network is to operate. The TOVS was designed primarily for the retrieval of
temperature and humidity profiles, and several algorithms have been established to
invert TOVS sensor radiances. Recent improvements in the 3I retrieval algorithms
{Claud et al. 1989, Francis 1994, 1995) have demonstrated that TOVS radiances can
be used to derive temperature and humidity profiles over more problematic polar
surfaces. Francis (1995) further demonstrated that a combination of HIRS channels
can be used to obtain information on cloud-type and cloud-phase, and to estimate
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cloud physical thickness and cloud droplet effective radius for certain types of clouds.
Recent theory by Nakajima and King (1990), adapted and applied to polar surfaces
by Key and Stone (1995), has shown the capability of the AVHRR sensor (TOVS
contains the relevant AVHRR channels) to simultaneously retrieve cloud optical
thickness and cloud effective droplet size. In addition, statistical relationships between
brightness temperatures and surface radiative fluxes can be exploited by the network.
For example, a statistical relationship exists between TOVS MSU channel 2 and
observed ice surface temperatures under cloudy skies during winter (Francis 1994)
and can be explained by the ‘radiation boundary layer’ theory of Overland and
Guest (1991).

In order to demonstrate that a ANN can learn the individual steps in the
calculation of surface radiation flux calculations a number of experiments were
conducted. Escobar et al. (1995) have previously shown that the retrieval of temper-
ature and humidity profiles from TOVS can be performed using a ANN. Figures
1(a) and 1(b) demonstrate the capability of a ANN to compute cloud optical
properties over arctic surfaces from AVHRR radiances. The figures were generated
by training an ANN on the input and output data generated using the methodology
described by Key and Stone (1995). This algorithm uses one absorbing and one
non-absorbing wavelength to simultaneously retrieve the cloud particle effective
radius and the visible optical depth (Nakajima and King 1990). An ANN can also
perform the forward radiative transfer calculations needed to calculate downwelling
shortwave and longwave fluxes. Using a two-stream radiative transfer model (Key
1996) with a wide variety of atmospheric and surface conditions, training and test
data sets of surface radiative fluxes were computed. An ANN was then trained using
cloud particle effective radius, cloud optical depth, cloud top temperature and height,
surface temperature and albedo, solar zenith angle, near-surface vapour pressure,
and total aerosol optical depth as input. Results are shown in figures 2 (a) and 2 (b)
for the downwelling surface shortwave and longwave fluxes, respectively.

It is certainly possible to use the networks discussed above in a serial fashion as
a substitution for the algorithm that they were trained on. This would have the
advantage that intermediate variables would still be generated and would provide a
substantial gain in processing speed over their algorithmic implementations.
However, an algorithm implemented in this fashion would also inherit all the short-
comings of the physical algorithms discussed above. In this paper we present results
from a network that bypasses these intermediate steps.

One of the most important variables determining downwelling longwave flux
(DWL) is the height of the cloud base. For a thin single-layer cloud, cloud base
height can be calculated if cloud optical thickness, the cloud droplet size distribution
and cloud top height are known. However, if clouds become optically thick this
relation reaches a limit. Figure 3 shows modelled broadband downwelling short and
longwave fluxes for a range of cloud fractions and cloud physical thicknesses. These
computations were made for a low lying cloud using a two-stream model (Key 1996,
Schweiger and Key 1994) by assuming constant cloud optical properties and
temperature profiles. Figure 3 shows that the problem of obtaining cloud physical
thickness can be constrained if cloud fraction is known (from HIRS brightness
temperatures) and both shortwave and longwave downwelling radiation fluxes at
the surface are available from observations. The network can therefore use this
information to ‘learn’ a value for cloud base height for situations where the cloud
optical thickness becomes too large.
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Figure 1. Performance of a neural network (NN) trained to invert (a) optical depth and
(b) cloud droplet effective radius from AVHRR channels 2 and 3 (09 and 3-7 um,
respectively). Input parameters are the reflectances in these two channels, the surface
albedo, aerosol optical depth, solar zenith angle, and the sensor scan angle. Input
reflectance values are computed using a discrete ordinate radiative transfer model
(RTM).

4. Data

Results are presented for three separate time periods and locations: the
Co-ordinated Eastern ARctic Experiment from 19 September 1988 through
12 December 1988 (CEAREX Drift Group 1990) (figure 4) and the LeadEx experi-
ment in the Beaufort Sea (figure 5) from 24 March 1992 through 4 April 1992
(LeadEx Group 1993). The CEAREX time period took place for the most part
during the polar night, so only a few measurements of downwelling shortwave fluxes
from the beginning of the period are available. Measurements were made at a drifting
ice camp and on the research vessel Polarbjsern using an Eppley pyrgeometer. The
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Flgure 2. Performance of a neural net (NN) trained to estimate (a) downwelling shortwave
and (b) longwave fluxes using surface temperature and albedo, cloud physical and
optical properties, illumination geometry, and atmospheric aerosols and water vapour.
Fluxes estimated with the neural network are compared with those computed with a
two-stream radiative transfer model (RTM).

data were corrected for dome temperature, and frost and snow were removed
manually. Data were averaged over 10min intervals. Measurements during the
LeadEx period were also made at a drifting ice camp. Shortwave and longwave
measurements were made at 10s intervals and averaged to th intervals, also using
Eppley instruments (Ruffieux et al. 1995). Measurements from the LeadEx and
CEAREX experiments were combined to yield a data set (hereafter referred to as
ICE) representing conditions over sea ice. A data set representing coastal conditions
was also compiled using 1 h average meteorological and radiation observations made
at Barrow, Alaska (R. Stone, personal communication, 1995). A 5 month subset
(January 1992 through May 1992) is used for training a neural network performing
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Figure 3. Downwelling broadband short- and longwave fluxes computed as a function of
cloud fraction and physical thickness. Radiative transfer calculations were conducted
using a subarctic winter atmospheric profile at a solar zenith angle of 58°. The following
values are assumed constant: Cloud top height (725 mb), effective cloud droplet size
(10 um), liquid water concentration (0-2 gm~3), and surface albedo (0-75).

Figure 4. Locations of CEAREX camp.

radiation flux retrievals for conditions typical of a coastal station (hereafter referred
to as CST). TOVS MSU and HIRS data for these periods were acquired from the
National Center of Atmospheric Research (NCAR) and NOAA NESDIS and colloc-
ated with the ground measurements. HIRS and MSU brightness temperatures are
preprocessed and interpolated to ‘retrieval boxes’ using the corresponding steps of
the 31 algorithm. Preprocessing includes calibration for both channels and corrections
for antenna pattern, limb effects and surface emissivity (except MSU1) for the MSU
channels. (Chedin et al. 1985). Surface observations were matched with the closest
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Figure 5. Locations of LeadEx camp.

retrieval box within a 200 km radius from the location of the surface station. Satellite
and surface observations were allowed to be no more than 30min apart (centre of
the 1h interval). The physically-based method for the computation of downwelling
longwave fluxes (Francis 1995) was applied to a subset of the CEAREX data. This
method combines the atmospheric temperature and humidity profiles computed
using the 3I algorithm with cloud properties derived from HIRS channels to calculate
downwelling longwave fluxes using a two-stream radiative transfer model. Physically-
based results are used for comparison with the results of the neural network.

5. Results
5.1. Results from ICE data set

ICE data set training (315) and test (79) cases were randomly drawn without
replacement from these observations. Results from all experiments are summarized
in table 1, which gives the root-mean-square (r.m.s.) error, the mean error (ME), and
the square of the correlation coefficient (R?). Prior to training, data were scaled into
the range 0-15 to 0-85. Using a learning rate (Rummelhart et al. 1986) of 0:1 and a
momentum value of 0-05, the network was trained for 17 500 iterations before training
was stopped because the error for the test data set began to rise and the network
had reached its level of optimal generalization. Slowing the learning rate to 0.05 and

Table 1. Difference between observed and estimated surface radiative fluxes.

Downwelling Downwelling
longwave shortwave

Training Test
cases cases rms. ME ( R* rms. ME R?

ICE 315 79 195 =236 072 25 0-05 097
LeadEx (trained on ICE) 149 0-07 082 348 13 096
CEAREX (trained on ICE) 2251 —41 054 NA NA NA
Physical model (CEAREX) NA 138 287 76 04 NA NA NA

ANN corresponding to above NA 138 209 —08 062 NA NA NA
CST 716 180 2015 —590 080 3626 464 096
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setting the momentum to 0 for the last 5000 cycles improved results slightly. After
training, the network was applied to the test data set. Figures 6 and 7 show a
comparison of observed and network-derived downwelling longwave (DWL) and
shortwave fluxes (DWS) for the test cases. Error of rms. for the DWL flux is
19-5W m~? with a mean error of —2:36 Wm™2. The variance in the surface observa-
tions explained by the ANN-based model is 72 per cent. The r.m.s. error for DWS
fluxes for the combined ICE data set is 249 Wm™? with a mean error (ME) of
0-05Wm™2 DWS results for the combined experiment are skewed because DWS
for the majority of cases from the CEAREX data set are 0 during darkness. Results
for the LeadEx cases were therefore computed separately using the network trained
on the combined data. DWS r.m.s. errors for the LeadEx period alone are 34-8 Wm ™2
with a ME of 1:3Wm~2. DWL errors for the LeadEx period are 149 Wm™? (r.m.s.)
and 0-07 Wm™2 (ME). DWL errors for the CEAREX period are 22:57 Wm ™2 (r.m.s.)
and —4'1 Wm™2 (ME). It is interesting to see that the errors in DWL fluxes for the
LeadEx period are substantially smaller than for the CEAREX period. There are
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Figure 6. Comparison of downwelling longwave flux computed by the neural network vs.
surface observations for the ICE data set.
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Figure 7. Comparison of downwelling shortwave flux computed by the neural network vs.
surface observations for the ICE data set.
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several possible explanations for this. Since the CEAREX period covers a longer
time period, the range of possible conditions over which the network has to find a
retrieval function is greater. Although the range in downwelling longwave fluxes is
similar, temperature structure, cloud conditions and ice types are likely to vary over
a greater range. Additionally, the larger proportion of downwelling shortwave fluxes
in the LeadEx data may have provided constrains during training (see section 3.2)
that resulted in a network that performs better when reflected solar radiation in
visible and near-infrared channels is present.

Since the cosine of the solar zenith angle is one of the input variables, and the
network clearly must exploit this strong relationship, it is interesting to ask what
additional skill the network has acquired in retrieving DWS. Figure 8 shows the results
of a simple regression model, where DWS = a + b cos(f), where  is the solar zenith
angle. For the LeadEx data set, the rm.s. error is 50 Wm ™2 with explained variance
of 86 per cent. Comparing these results with the test data for the LeadEx period shows
that the network reduces the error by 15Wm™? (r.m.s.) and increases the explained
variance by 10 per cent. Errors in DWS using the linear model naturally increase with
greater values of DWS. Interestingly, the ANN retrieved DWS value do not show this
trend. This is clear evidence that the ANN has indeed been able to interpret the TOVS
brightness temperatures to make corrections for non-linear radiative processes.

Figure 9 shows a comparison of the ANN results with those of the physical
model (Francis 1995). Since physical model retrieval is limited to cases where the 31
algorithm performs a retrieval, the case comparison is not identical to the test data
set. However, none of the cases in this comparison had been used in the training of
the ANN. Errors of DWL for the physically-based algorithm are 28 Wm ™2 (r.m.s.)
and 7-6 (ME) vs. 21Wm™? (r.m.s.) and —1 (ME). This demonstrates the superior
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Figure 9. Comparison of downwelling longwave flux computed by the neural network
(crosses) vs. the physical model of Francis (diamonds).

performance of the ANN over the physical method for the data and methods
examined here.

5.2. Results from the CST data set

Barrow, the source of the CST data set, is located on a peninsula off the Alaska
coast on the Beaufort Sea. Climatological conditions for the winter months at this
location are similar to those found at the camps used for the ICE data set. However,
from the perspective of the TOVS HIRS and MSU sensors with footprint sizes of
18 and 100km, respectively, this location presents a problem. Within a single foot-
print one may find bare or snow-covered land, lakes, open ocean in a flaw-lead
located near the coast and sea ice. Pairs of TOVS brightness temperatures and
surface observations of DWL and DWS were separated into 716 training and 180
test cases. The network shown described in section 3.2, although with an increased
number of hidden units (8), was trained using the CST data set. Results of the test
data set are shown in figures 10 and 11.

Errors for DWS are 3626 Wm ™2 (r.m.s.) and 464 Wm ™2 (ME) and for DWL
20-15Wm™? (r.m.s.) and —590 Wm ™2 (ME). Using only four hidden units produced
similar errors for DWL but increased the DWS r.m.s. to 45-03 Wm™2.

6. Discussion and conclusions

The results presented above are very encouraging and demonstrate the viability
of the presented method. Mean retrieval errors (ME) are clearly within the desirable
range for climate process studies. The point versus areal average nature of this
comparison and the intrinsic error in the surface observations of radiation in the
Arctic (e.g., frost covering of measurement dome) both contribute to the estimation
error. Additionally, the coarse vertical resolution of the HIRS weighting functions
makes this sensor ‘blind’ to certain atmospheric characteristics that affect the surface
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Figure 10. Comparison of downwelling longwave flux computed by the neural network vs.
surface observations for the CST data set.
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Figure 11. Comparison of downwelling shortwave flux computed by the neural network vs.
surface observations for the CST data set.

radiative fluxes, e.g., low-level temperature inversions cannot be completely resolved.
Of course, these error sources are not unique to the ANN method presented here,
but are factors in physical retrievals as well.

The difficulty in comparing point measurements with 100 km satellite retrieval
footprints is illustrated by the time auto-correlation function for DWL at the
CEAREX camp (figure 12). Making the admittedly crude assumption that the vari-
ables affecting downwelling longwave radiation travel at the same speed as the wind
(typical value for the Arctic 10m/s), a 100km distance corresponds to a time
difference of approximately 3 h. Thus the temporal auto-correlation at a 3h lag can
be used as a rough estimate of the spatial auto-correlation at 100km. At this time
lag the auto-correlation of DWL drops to 0-7. For DWS (not shown), also affected
by more variable surface conditions, the spatial variability is even greater.

Having demonstrated the method’s performance for the four months of the ICE
data set and the five months of the CST data set, we are now faced with the challenge
to construct a network that performs the retrievals over the range of surface and
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Figure 12. ‘Temporal auto-correlation of downwelling longwave fluxes at the CEAREX camp.

atmospheric conditions that will be encountered within the domain of its intended
application. As with any empirical method this is very important. Figure 13 illustrates
one aspect of this problem. DWL calculated by the network that was trained on the
CEAREX data exclusively and then applied to LeadEx data set. Errors of r.m.s.
(25 W m™2) are similar to the results achieved for the CEAREX data but the mean
error indicates a bias of —12Wm™2. This does not come as a great surprise. In
addition to different environmental conditions (see section 5.1), we need to consider
the fact that the TOVS instruments for NOAA-10 (CEAREX period) and NOAA-11
(LeadEx period) have different channel combinations. For example, channel 10 on
NOAA-10 has a central wavelength of 83 um, while on NOAA-11 it is 12:56 um.
Clearly such changes, as well as more subtle changes in the spectral response functions
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Figure 13. Comparison of downwelling longwave fluxes computed by a neural network
which was trained on the CEAREX data set and applied to the LeadEx data set. Note that
for the CEAREX period NOAA-10 data were used; for the LeadEx period NOAA-11 data
were used.
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and inaccuracies in the calibrations, need to be accounted for. We are currently
approaching this problem from several angles. First, we are assembling a much
larger data set from multidecadal measurements of surface radiation fluxes made on
Russian drifting stations which will provide additional training data for central
Arctic conditions. Second, we are also working on the generation of an artificial
data set based on modelled TOVS brightness temperatures and DWL and DWS
fluxes over a wide range of cloud conditions. Differences in sensor systems can be
addressed through corrections in preprocessing steps. In addition, the upcoming
year-long Arctic field experiment SHEBA (Moritz et al. 1993) will provide an
excellent opportunity to obtain a training and validation data. Since radiatively
relevant cloud properties will be measured, it will provide an opportunity to analyse
how the neural network responds to changes in specific variables.
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